
Introduction to di↵erential equations and applications

Bernard Deconinck
Department of Applied Mathematics

University of Washington
Campus Box 352420

Seattle, WA, 98195, USA

October 2, 2009





Prolegomenon

These are the lecture notes for Amath 351: Introduction to di↵erential equations and
applications. This is the first year these notes are typed up, thus it is guaranteed that
these notes are full of mistakes of all kinds, both innocent and unforgivable. Please

point out these mistakes to me so they may be corrected for the benefit of your
successors. If you think that a di↵erent phrasing of something would result in better

understanding, please let me know.

The figures in these lectures were produced using John Polking’s DFIELD2005.10 and
PPLANE2005.10 (see http://math.rice.edu/~dfield/dfpp.html), as well as Maple

(see http://www.maplesoft.com) and lots of xfig.

These notes are not copywrited by the author and any distribution of them is highly
encouraged, especially without express written consent of the author.
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Lecture 1. Di↵erential equations and their solutions

1. Algebraic equations

An algebraic equation is an equation between an unknown quantity x and functions of
this quantity x. It may be written in the form

F (x) = 0,

such as

2x2 + x� 3 = 0.

If there are multiple variables, say x and y, then the equation is of the general form

F (x, y) = 0,

where F is a vector. As an example,

⇢
x

2 � y

2 = 2,
x + y = cos(x)

.

So, given an algebraic equation, or a set of algebraic equations, we need to find a
number or a set of numbers.

2. Solutions of algebraic equations

Claim: x = 4 is a solution of x

2 � 2x� 8 = 0.
Check: Plug x = 4 into the equation: 42 � 2 ⇤ 4 � 8 = 0, which is true. Thus indeed,
x = 4 solves the equation.

Note that checking that a given number solves the algebraic equation requires no more
e↵ort than plugging the proposed solution into the equation. This is a lot easier than
actually finding a solution.

3. Di↵erential equations

A di↵erential equation is a relationship between a function and its derivatives. It asks us
to find a function, instead of a number.

Example: y

0 + 2y = 1, where y = y(x).
In order to solve this equation, we need to find all functions that satisfy it.
Claim: y = 1

2 + ce

�2x is a solution of this equation, with c being a constant.
Check: PLUG IT IN!

y

0 = �2ce�2x
,

) �2ce�2x + 2

✓
1

2
+ ce

�2x

◆
?
=1

) 1
!
=1.
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We should not be surprised there is an arbitrary constant in the solution. The dif-
ferential equation contains one derivative. To get rid of it, you will need to integrate at
some point. This integration will result in an integration constant.

This is pretty good: although we don’t know yet how to solve di↵erential equations,
we already know how to verify that something is a solution. Note that this verification
requires us to take derivatives. That’s okay: taking derivatives is mechanical. There’s
a set of rules, and if we follow these rules, we’re doing fine. Since solving di↵erential
equations requires us to get rid of derivatives, you might justifiably think that integration
enters into it. But integration is a lot harder than di↵erentiation: there are some rules,
but often there are tricks to be used. Even more often, integrals cannot be explicitly
done. So be it. In summary:

Checking = Plugging in!

4. The order of a di↵erential equation

The order of a di↵erential equation is the order of the highest derivative appearing in it.

Example: y

0 + 2y = 1 is a first-order equation.

Example: y

000 = y

00 � y + sin(x) is a third-order equation.

Ordinary vs. partial di↵erential equations

If a di↵erential equation contains derivatives with respect to only one variable, it is called
an ordinary di↵erential equation. Otherwise it is called a partial di↵erential equation.

Example: y

0 + 2y = 1 is an ordinary di↵erential equation.

Example: @u
@t

= @2u
@x2 is a partial di↵erential equation.

5. Linear vs. nonlinear di↵erential equations

An equation is called linear if the unknowns in it appear in a linear way: they do not
multiply each other or themselves, and they do not appear as arguments of nonlinear
functions.

Example: y

0 + 2y = 1 is a linear di↵erential equation

Example: y

0 = y

2 is a nonlinear di↵erential equation, because of the y

2 term.

Example: y

0 = 1
1+y

is a nonlinear di↵erential equation, because the y on the right-hand
side appears in the nonlinear function 1/(1 + y).

Example: yy

0 = x+y is a nonlinear di↵erential equation, because the unknown functions
y and y

0 multiply each other in the left-hand side.

Example: check that y = c1 cos(x) + c2 sin(x) is a solution of y

00 + y = 0. Note that this
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is a linear second-order equation.

Check: Plugging in gives:

y

0 = �c1 sin(x) + c2 cos(x)

y

00 = �c1 cos(x)� c2 sin(x)

) �c1 cos(x)� c2 sin(x) + (c1 cos(x) + c2 sin(x))
?
=0

) 0
!
=0.

Note that the solution of this second-order problem depends on two arbitrary con-
stants c1 and c2. This is to be expected: in order to get rid of two derivatives, you expect
to have to integrate twice, resulting in two integration constants.

6. Initial-value problems

An initial-value problem is a di↵erential equation together with some algebraic con-
ditions which allow you to determine the arbitrary constants. In general, if you want to
determine all arbitrary constants, you need to specify as many initial conditions as the
order of the equation.

Example: show that y = 1
2 + 1

2e
�2x satisfies the initial-value problem

⇢
y

0 + 2y = 1
y(0) = 1

.

We have already verified that the given y satisfies the di↵erential equation, so it is left
to check that it satisfies the initial condition. At x = 0, y = 1/2 + 1/2 = 1, so the initial
condition is indeed satisfied.

Example: find c1, c2 so that y = c1 cos(x) + c2 sin(x) satisfies the initial-value problem

⇢
y

00 + y = 0
y(0) = 1, y0(0) = 0

.

We already know that the given y(x) satisfies the di↵erential equation for all choices of c1

and c2. We have y(0) = c1, so that from the first initial condition it follows that c1 = 1.
Next, y

0 = �c1 sin(x) + c2 cos(x), so that y

0(0) = c2. It follows from the second initial
condition that c2 = 0, so that the solution to the initial-value problem is y = cos(x).

Geometry, the previous example may be understood in terms of curves and tangents.
This is illustrated in Fig. 1. The first initial condition specifies where the curve starts
at x = 0, whereas the second one specifies how it starts there: in this case horizontally,
since the derivative is zero.
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Figure 1: The solution of the initial-value problem y

00 + y = 0, with y(0) = 1 (the black
circle) and y

0(0) = 0 (the horizontal tangent).

7. Guessing solutions

Our main method for solving di↵erential equations in this course will be: (drum roll...)

GUESSING!

Often we will guess the form of a solution. A suitable form for the solution will depend
on a few parameters. We will adjust the parameters to make the solution work.

Example: consider the di↵erential equation y

00 + 3y0 � 4y = 0. This equation ask us to
find all functions y(x) such that when you take a linear combination of y(x) and two of
its derivatives, you get zero. In other words, we are looking for a function y(x) whose
derivatives are very similar to it. One such function is y = e

ax, where a is a constant.
Let’s check to see if this works.

y =e

ax

) y

0 =ae

ax

) y

00 =a

2
e

ax

) y

00 + 3y0 � 4y =a

2
e

ax + 3ae

ax � 4eax

=(a2 + 3a� 4)eax
.

So, this does not work... unless a

2 + 3a� 4 = 0, i.e., a = 1 or a = �4. In other words,

y1 = e

x
, y2 = e

�4x

are both solutions. By guessing the functional form of a solution, we reduced the problem
of solving a di↵erential equation to the problem of solving an algebraic equation. This is
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definitely progress! We don’t have all solutions yet, as the general solution should depend
on two arbitrary constants. In the lectures on second-order equations we will learn how
to use the two solutions we just found to construct the general solution.

8. Direction fields

For any first-order di↵erential equation

y

0 = f(x, y),

we can get a graphical idea of what the solutions look like, even if we can’t solve the
equations. At any point (x0, y0) in the (x, y)-plane, the equation tells us what the rate
of change of the solution through this point is. So, if we happen to find ourselves at this
point (perhaps the initial condition put us there), the equation tells us how to move on
from the point where we are. This is illustrated in Fig. 2.

x0

y0

x

y

1

y’=f(x ,y )0 0

Figure 2: At any point (x0, y0) we may draw the tangent vector to the solution through
this point.

The collection of all arrows through all points is called the direction field of the
di↵erential equation. The rate of change at any point gives the tangent vector to the
solution curve through this point, allowing us to draw the tangent vector to the curve
y = y(x), which solves the di↵erential equation, even if we cannot determine the form of
this solution.

Thus, to find out what y(x) looks like:

FOLLOW THE ARROWS!

Two examples of direction fields for two di↵erent di↵erential equations are given in
Figs. 3 and 4. Some solution curves are drawn as well.

As you may see from these direction fields, they may often be used to understand
the long-time behavior of solutions, which in many applications is all we care about. For
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instance, in Fig. 4 it is clear that for all solutions with y(0) > 1 we have that y(x)!1,
as x ! 1, and y(x) ! �1, as x ! 1, if y(0) < 1. It appears that if y(0) = 1, then
y(x) = 1, for all x > 0. This may easily be verified: plugging in allows us to verify
immediately that y(x) = 1 is indeed a solution.

Of course, drawing all the tiny vectors in a direction field is a lot of work. It’s also
very boring work. In other words, it is the kind of work that a computer is very good at.
On the course webpage you will find a link to a Java applet by John Polking and others
to draw direction fields. It is available at http://math.rice.edu/~dfield/dfpp.html.
The applet also allows you to draw in solution curves by clicking on the point through
which you wish to draw a curve.

Figure 3: The direction field for the equation y

0 = cos(y)� cos(x), together with some
inferred solution curves.

Figure 4: The direction field for the equation y

0 = y

2 � 1, together with some inferred
solution curves.
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Lecture 2. First-order separable di↵erential equations

Almost all di↵erential equations we will consider in this course are linear. This lecture is
an exception.

Consider a di↵erential equation of the form

dy

dx

= f(x, y).

This is the most general form of a first-order di↵erential equation. If f(x, y) can be
written as the product of a function of x and a function of y, we can solve the equation.
Such an equation is called separable. It is of the form

dy

dx

= g(x)h(y).

Then

1

h(y)
y

0(x) = g(x).

Integrating both sides with respect to x gives

Z
1

h(y)
y

0(x)dx =

Z
g(x)dx.

The integral on the left may be rewritten as

Z
1

h(y)
dy,

and we get

Z
1

h(y)
dy =

Z
g(x)dx + c,

where we have written the constant of integration explicitly, so that we do not forget it.
Now the problem has been reduced to a calculus problem, and the di↵erential equation

has been solved. Note that even if we cannot do the integral, we consider the di↵erential
equation solved because there are no more derivatives in the problem.

Even if we can do the integral, it is unlikely that we can solve the resulting equation
for y. So be it. If we can solve for y as a function of x we say that we have found an
explicit solution. If not, we say we have an implicit solution.

Example: Consider the initial-value problem

⇢
y

0 = �6xy

y(0) = �4
.

From the first equation, we obtain
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1

y

dy =� 6xdx

)
Z

1

y

dy =� 6

Z
xdx + c

) ln(y) = �3x2 + c.

This is an implicit solution of the di↵erential equation. In this case, we can solve for y:

y = e

�3x2+c

= e

�3x2
e

c

= Ce

�3x2
,

where we have set C = e

c, an arbitrary constant. Now we may use the initial condition:

�4 = Ce

0 ) C = �4,

and the explicit solution is

y = �4e�3x2
.

Example: Consider

y

0 =
3x2 + 4x + 2

2(y � 1)

) (2y � 2)dy =(3x2 + 4x + 2)dx

)
Z

(2y � 2)dy =

Z
(3x2 + 4x + 2)dx + c

) y

2 � 2y =x

3 + 2x2 + 2x + c.

This is an implicit solution to the di↵erential equation. In this case, we can actually write
down the explicit solution. This amounts to solving the above quadratic equation for y

explicitly, which may be done easily by completing the square:

y

2 � 2y + 1 =x

3 + 2x2 + 2x + c + 1

) (y � 1)2 =x

3 + 2x2 + 2x + c + 1

) y � 1 = ±
p

x

3 + 2x2 + 2x + c + 1

) y =1 ±
p

x

3 + 2x2 + 2x + c + 1.

This is the explicit solution of the di↵erential equation. As you may deduce from this
example, in many cases it is much harder to find an explicit solution than an implicit
solution.
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Figure 5: The solution curves for the di↵erential equation y

0 = (3x2 + 4x + 2)/(2y � 2).

The solution curves for this example are plotted in Fig. 5. On the line y = 1, the
solution curves have a vertical tangent. All curves above the line y = 1 correspond to the
+p for the explicit solution, whereas all curves below y = 1 correspond to the �p for
the explicit solution.

Example: Suppose we have to solve the initial-value problem

8
<

:
y

0 =
3x2 + 4x + 2

2(y � 1)
y(0) = �1

.

• Using the implicit solution, we get

1 + 2 = 0 + c ) c = 3,

and thus
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y

2 � 2y = x

3 + 2x2 + 2x + 3,

which tells us which solution curve to use, but not which part of it.

• Using the explicit solution we obtain

�1 = 1 ±
p

c + 1

) � 2 = ±
p

c + 1.

Independent of what value we find for c, this equality can only hold if we use the
� sign. Proceding with this choice:

�2 = �
p

c + 1 )
p

c + 1 = 2 ) c = 3,

giving the explicit solution

y = 1�
p

x

3 + 2x2 + 2x + 4.

The explicit solution conveys which solution curve has to be used, and also which
part of it is found.

Example: This example demonstrates that it is not always possible to find an explicit
solution, even if we can solve the di↵erential equation. Consider the initial-value problem

8
<

:

dy

dx

=
y cos x

1 + 2y2

y(0) = 1
.

We obtain

1 + 2y2

y

dy = cos xdx

)
Z

1 + 2y2

y

dy =

Z
cos xdx + c

)
Z ✓

1

y

+ 2y

◆
dy = sin x + c

) ln y + y

2 = sin x + c.

This is the implicit solution of the di↵erential equation. It is not possible to solve this
equation for y as a function of x, thus no explicit solution can be found. Nevertheless,
we can still solve the initial-value problem. From the initial condition:

ln 1 + 12 = sin 0 + c ) c = 1,
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so that the implicit solution of the initial-value problem is

ln y + y

2 = sin x + 1.

In what follows, I want to demonstrate that when solving separable equations, you have
to be careful when you divide. Consider the following

Example: ⇢
y

0 = y

2

y(0) = 0
.

• Proceeding without caution:

) 1

y

2
dy = dx

)
Z

1

y

2
dy =

Z
dx + c

) �1

y

= x + c

) y =
1

x + c

.

Now we use the initial condition, which leads to 0 = �1/c, which cannot be solved
for c! The problem occured right at the beginning, where we divided by y

2, which
we may only do if y 6= 0. As it turns out, for the given di↵erential equation, y = 0
is exactly what we need.

In general, whenever we divide by a function of y, we need to check what happens
when the denominator of this function is zero. Let’s try this example again, being
more careful.

• Proceeding with caution, we need to split the solution in two cases:

– Case y = 0. In this case we cannot divide by y

2. Let’s see if y = 0 is a
solution of the di↵erential equation: plugging in gives

0
!
= 0,

thus y = 0 is a solution! Even better, it is the solution that satisfies the initial
condition. Thus, in summary, the solution of the initial value problem is y = 0.

– Case y 6= 0. If di↵erent initial conditions are given, we have

) 1

y

2
dy = dx

)
Z

1

y

2
dy =

Z
dx + c

) �1

y

= x + c

) y =
1

x + c

.
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Lecture 3. Linear first-order di↵erential equations

In this lecture, we consider equations of the form

y

0 + p(x)y = q(x),

where p(x) and q(x) are given functions of x. We want to find all solutions y(x).

Example: If p(x) = 0, this is easy:

y

0 = q(x) ) y =

Z
q(x)dx + c.

Example: If p(x) 6= 0, it’s not that easy. Consider the equation

y

0 + y = 5.

So here p(x) = 1, q(x) = 5. Let’s rewrite this equation:

e

x(y0 + y) = 5ex

) e

x
y

0 + e

x
y = 5ex

) (ex
y)0 = 5ex Using the product rule

) e

x
y = 5ex + c Integration

) y = e

�x(5ex + c)

) y = 5 + ce

�x
.

This di↵erential equation became easy to solve, once we multiplied it by the right
function. So what is the right function? It is the function such that the left-hand side
becomes the derivative of that function multiplied by y.

Let’s see how we can accomplish this in general: we start with

y

0 + p(x)y = q(x).

Now we multiply by the right function, which we will call µ(x). At the moment we don’t
know this function yet. We will have to find a way to figure out what this function is,
using the above requirement.

µ(x) (y0 + p(x)y) = µ(x)q(x)

) µ(x)y0 + µ(x)p(x)y = µ(x)q(x).

Remember that we need the left-hand side to be a derivative. It should be (µy)0. Thus
we need

(µ(x)y)0 = µ(x)y0 + µ(x)p(x)y

) µ

0
y + µy

0 = µy

0 + µp(x)y

) µ

0
y = µp(x)y

) µ

0 = µp(x).
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This is a separable di↵erential equation, like the ones we learned to solve in the previous
lecture. Hurray! We get

µ

0 = µp(x)

) dµ

µ

= p(x)dx

)
Z

dµ

µ

=

Z
p(x)dx

) ln µ =

Z
p(x)dx

) µ = e

R
p(x)dx

.

Note that we have ignored the constant of integration, as we only care about finding
one function µ(x) for which the left-hand side becomes a derivative. There is no need to
find all such functions. Once we have one such function µ(x), the di↵erential equation
becomes

(µ(x)y)0 = µ(x)q(x).

Now we can integrate this, to get

µ(x)y =

Z
µ(x)q(x)dx + c

) y =

R
µ(x)q(x)dx + c

µ(x)
.

Let’s summarize what we have found: To integrate a linear, first-order equation, we
use the following steps:

0) Find p(x), q(x), i.e., put the equation in the right form, ensuring that the coe�cient
of y

0 is 1.

1) Find µ = e

R
p(x)dx .

2) y =

R
µ(x)q(x)dx + c

µ(x)

3) If an initial condition is given, we can find c at this point.

Example: Let’s try this on our original example:

y

0 + y = 5.

0) p(x) = 1, q(x) = 5.

1) µ = e

R
p(x)dx = e

R
dx = e

x.

2) y =

R
µ(x)q(x)dx + c

µ(x)
=

R
e

x5dx + c

e

x
=

5ex + c

e

5
= 5 + ce

�x, which is the solution

we found earlier.
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3) No initial conditions are given, thus we are done.

Example: Let’s do another one.
⇢

y

0 + 2ty = t,

y(0) = 0.

0) p(t) = 2t, q(t) = t.

1) µ = e

R
p(t)dt = e

R
2tdt = e

t2 .

2) y =

R
µ(t)q(t)dt + c

µ(t)
=

R
e

t2
tdt + c

e

t2
=

1
2e

t2 + c

e

t2
=

1

2
+ ce

�t2 .

3) Using the initial condition, 0 = 1
2 + c, from which c = �1/2. The final solution to

the initial-value problem is y = 1
2(1� e

�t2).

Example: And maybe another one?

xy

0 + y = x

0) p(x) = 1/x, q(x) = x/x = 1, since we need to divide by x to ensure that y

0 has
coe�cient one. Otherwise our solution formulae are not valid.

1) µ = e

R
p(x)dx = e

R 1
x

dx = e

ln(x) = x.

2) y =

R
µ(x)q(x)dx + c

µ(x)
=

R
x ⇤ 1dx + c

x

=
x

2
/2 + c

x

=
x

2
+

c

x

..

3) No initial conditions are given, thus we are done.
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Lecture 4. Applications of first-order di↵erential equa-
tions

Even simple di↵erential equations like the ones we’ve seen so far have lots of interesting
applications. In this lecture, we’ll look at a few.

1. Mixture problems

Consider the set-up shown in Fig. 6. We need to introduce some names so we’re all talking
about the same thing. What are we looking at? On the left is a pipe, through which fluid
is flowing into the big tank. This fluid has a certain concentration of a solvent, such as
salt. On the right is the outlet pipe of the tank, through which the mixture is leaving.
We’re assuming that the concentration of the mixture is the same anywhere in the tank,
so that the concentration of solvent in the mixture leaving the tank is the same as that
of the concentration of solvent in the mixture in the tank.

Figure 6: The set-up for a mixing problem

What names should we introduce?

• m(t): the amount of solvent at time t in the tank. This will be in kilograms (kg).

• m0: the starting amount of solvent m(0), also in kg.

• V (t): the volume of fluid mixture in the tank at time t (liters).

• V0: the initial volume of fluid mixture V (0) (liters).

• C1: The concentration of solvent in the incoming fluid (kg/liters).

• C2: The concentration of solvent in the outgoing fluid (kg/liters).

• q1: the inflow rate (how fast is the fluid coming in; liters/sec).
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• q2: the outflow rate (how fast is the fluid going out; liters/sec).

Thus, the problem to be solved is to determine m(t) for any time t > 0.

Here’s the main di↵erential equation to be used in lots of problems:

dm

dt

= Increase in m(t) per time unit�Decrease in m(t) per time unit,

which is really just the definition of what a derivative is. So, if we can figure out suitable
expressions for the increase and the decrease of m(t), we’re all set.

-Increase per time unit: this is equal to how much is coming in to the tank*how
fast it is coming in, or: increase of m(t) per time unit = C1q1.

-Decrease per time unit: similarly, this is equal to how much is going out of the
tank*how fast it is going out, or: decrease of m(t) per time unit = C2q2.

Thus:
dm

dt

= C1q1 � C2q2.

Some of the things in this equation we know: C1, q1 and q2. The only one we don’t know
is C2. Thus, so far we’ve got one equation, but it has two things we don’t know. If we
can determine C2 in terms of things we know, or else in terms of the other thing we don’t
know m(t), we’re all set: then we’ll have one equation with one unknown quantity. We’ll
solve the equation and have our answer! It’s a cunning plan. So, how do we determine
C2(t)? Well,

C2 = amount of solvent in the tank/volume in the tank =
m(t)

V (t)
.

But what is V (t)? Well, to determine V (t), we can play the same game:

dV

dt

= Increase in V (t) per time unit�Decrease in V (t) per time unit

= q1 � q2.

This is a very easy di↵erential equation to solve, especially if q1 and q2 are both constant.
Then

V (t) = (q1 � q2)t + ↵,

where ↵ is an integration constant. To find ↵, we evaluate this expression for the volume
at the only time at which we know something about the volume: at t = 0, V (0) = V0.
This given

V0 = (q1 � q2)0 + ↵ = ↵.

Thus, we find that the volume of mixture in the tank at any time is given by

V (t) = (q1 � q2)t + V0.
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We can already see a few interesting things from this equation: (i) if q1 > q2, more liquid
is entering the tank than leaving it. The volume increases. (ii) if q1 < q2, more liquid is
leaving the tank than entering it. The volume decreases. (iii) Lastly, if q1 = q2 there’s as
much going out as coming in, and the volume in the tank stays the same.

Now we use the expression we just found in the di↵erential equation for m(t), to get

dm

dt

= C1q1 � q2
m

(q1 � q2)t + V0
.

This is a linear, first-order di↵erential equation of the kind we learned how to solve in the
previous lecture. What a coincidence! In order to solve it, we first rewrite the equation
in the form we had in the previous lecture:

dm

dt

+
q2

(q1 � q2)t + V0
m = C1q1.

Using the steps from the previous lecture, we have:

0) p =
q2

(q1 � q2)t + V0
, q = C1q1.

1) µ = e

R
pdt = e

R
q2

(q1�q2)t+V0
dt. You see there are two cases:

(a) q1 = q2 (the case of constant volume). In this case there’s no t-dependence in
the denominator, and we get µ = e

q2t/V0 .

(b) q1 6= q2 (changing volume). In this case, the integration is a bit more compli-
cated:

µ = e

q2
q1�q2

ln(V0+(q1�q2)t)

= e

ln(V0+(q1�q2)t)q2/(q1�q2)

= (V0 + (q1 � q2)t)
q2/(q1�q2)

.

Note that this equation only makes sense as long as the volume is positive: if
the volume is decreasing, it will become zero at some point. After that, this
calculation stops making sense.

Let’s proceed with Case (a), which is more important for applications.

2) The solution is given by

m =

R
µqdt + c

µ

=

R
e

q2t/V0
C1q1dt + c

e

q2t/V0

=
q1C1e

q2t/V0 V0
q2

+ c

e

q2t/V0

= C1V0
q1

q2
+ ce

�q2t/V0
.
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Since q1 = q2, this simplifies to

m = C1V0 + ce

�q2t/V0
.

3) At t = 0, this equation gives

m0 = C1V0 + c ) c = m0 � C1V0,

so that, finally, the amount of solvent in the tank at any time t is

m = C1V0 + (m0 � C1V0)e
�q2t/V0

.

Having obtained this result, we can analyze it to obtain interesting results. Also, we
should check that the outcome agrees with the intuition we have about the problem.
For instance, since we keep on pouring in concentration C1, it seems reasonable that the
eventual concentration m(t)/V (t) should approach C1. Let’s see:

lim
t!1

m

V

= lim
t!1

C1 +

✓
m0

V0
� C1

◆
e

�q2t/V0

= C1,

as expected.

2. Some examples from mechanics

In mechanics, you have seen a great many formulas relating quantities such as velocity,
acceleration, position, etc. Whole collections of such results exist, and their derivation
relies on distinct arguments in di↵erent settings. We’ll show now that all such formulas
all follow from one di↵erential equation, namely, Newton’s law. Newton’s law equates
force with mass times accelerations:

F = ma,

where F denotes the force acting on a particle, m is its mass, and a is its acceleration.
How is this even a di↵erential equation? Well, we know that the velocity is the derivative
of the position s, and the acceleration is the derivative of the velocity v. This is how the
derivatives come in. The general principle of dynamics is to specify forces. Once this
is done, Newton’s law gives us acceleration. Since the forces may depend on velocities
and position, we typically have a second-order di↵erential equation for the position as a
function of time.

If we look at the important case of constant acceleration, we have

a =
dv

dt

) v = at + c,

since we’re assuming that a is constant. Evaluating this at t = 0, when the initial velocity
is v(0) = v0 gives

v0 = c ) v = v0 + at.
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We’ve integrated once: we won’t be stopped. Let’s put in that the velocity is the deriva-
tive of the position. This gives:

ds

dt

= v0 + at ) s = ĉ + v0t +
1

2
at

2
.

At t = 0, with s(0) = s0, we get

s0 = ĉ ) s = s0 + v0t +
1

2
at

2
,

which may look familiar. Note how systematically these results were derived using even
the simplest di↵erential equations!

An important special case of constant acceleration is that of a body falling under the
influence of gravity close to the surface of the Earth. Then

a = �g,

where we choose the position axis to point upward, hence gravity is represented by a
negative acceleration. Our previous results become

v = v0 � gt,

s = s0 + v0t�
1

2
t

2
.

If the body is falling from rest from height h, then s0 = h and v0 = 0. How long does it
take the body to fall? We have

s = h� 1

2
gt

2
.

This is zero when

h =
1

2
gt

2 ) t

2 =
2h

g

) t =

s
2h

g

.

The velocity at the time of impact is

v = �gt ) v = �
p

2gh.

Both results probably look familiar.

Radioactive decay

Radioactive decay is a process through which an isotope of an element transforms into
another isotope of the same element. Typically, a sample of any species will be a mixture
of di↵erent isotopes. By measuring how much of a certain isotope has decayed, we can
determine the age of the sample, for instance. This is the basis for the method of carbon
dating.

Radioactive decay is governed by a simple first-order di↵erential equation

dN

dt

= �N.
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This equation states that the rate of change of the amount of isotope N is decaying
(the minus sign on the right) proportional to the amount of the isotope: if there’s a lot
of the isotope, lots will decay. If there’s only a little, only a small amount will decay.
The constant  is known as the decay constant. The solution of this simple di↵erential
equation is (check this, or even better: find it!)

N = N0e
�t

,

where N0 = N(0) is the initial amount of isotope.
The half-life time ⌧ is the time it takes for half of the amount of isotope to decay.

Let’s figure out what it is. At the half-life time t = ⌧ and N = N0/2. This gives

N0

2
= N0e

�⌧

) ln
1

2
= �⌧

) � ln 2 = �⌧

) ⌧ =
1



ln 2.

Determining the age of the Universe: assuming there was an equal amount of
U235 and U238 (two Uranium isotopes) at the Big Bang, and that currently there are 137.7
U238 for every U235, how old is the Universe? We also know the half-life times for both
isotopes: ⌧238 = 4.5 109yrs and ⌧235 = 7 108yrs.

Since N0,238 = N0,235 = N0, we know

N238 = N0e
� t

⌧238
ln 2

N235 = N0e
� t

⌧235
ln 2

) N238

N235
=

N0e
� t

⌧238
ln 2

N0e
� t

⌧235
ln 2

) 137.7 = e

t

⌧235
ln 2� t

⌧238
ln 2

) ln 137.7 = t ln 2

✓
1

⌧235
� 1

⌧238

◆

) t

⌧238 � ⌧235

⌧235⌧238
=

ln 137.7

ln 2

) t =
ln 137.7

ln 2

⌧235⌧238

⌧238 � ⌧235

) t = 0.6 1010yrs,

which is quite old.
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Lecture 5. Stability and phase plane analysis

Let’s look at another application. This one comes from population dynamics.

1. Linear model

Suppose we’re examining the growth of a small population, with plenty of resources and
no predators. Denote this population by y(t). Then, it seems reasonable that

dy

dt

= ↵y,

where ↵ > 0 is the growth constant: the population increases over time. We’re stating
that the population growth is proportional to the size of the population. Solving this
equation, as before, gives

y = y0e
↵t

,

and the population grows exponentially with time. We’ve used y0 = y(0) to denote the
initial population. This is reasonable, with the assumptions we’ve put in place. However,
the above solution says that the population will experience very rapid growth. Eventually,
maybe after a long time, the amount of resources might not be su�cient to support this
growth. Now what happens? To include e↵ects like this, we need a nonlinear model.

2. Nonlinear model

We’ll modify our model as follows:

dy

dt

= ↵

⇣
1� y

K

⌘
y = ↵y � ↵

K

y

2
.

Using the first formulation, we may think of ↵(1�y/K) as our growth constant, as for the
linear model. Now, the growth constant is dependent on y (so, it’s not really a constant
anymore): for y < K, it’s positive and it looks like the population will grow. On the other
hand, for y > K, the growth constant is negative and the population will decrease. Using
the second formulation, we can think of the right-hand side of the di↵erential equation
as the first two terms of a Taylor expansion.

Let’s solve this new, nonlinear di↵erential equation. Note that it is a separable equa-
tion:

dy

dt

= ↵

⇣
1� y

K

⌘
y

)
Z

dy�
1� y

K

�
y

= ↵

Z
dt

)
Z ✓

1

y

+
1

K

1

1� y
K

◆
dy = ↵t + c

) ln |y|� ln
���1�

y

K

��� = ↵t + c,
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where we have used partial fractions. After some more algebra, we get (check this!)

y =
y0K

y0 + (K � y0)e�↵t
,

with y0 = y(0).
Let’s examine this solution to find out what happens to the population as t ! 1:

does it die out? Does it persist? Does it grow forever?

• If y0 = 0, then limt!1 y = 0: if there’s no population to start with, things aren’t
very interesting.

• If y0 = K, then limt!1 y = K: apparently K is that population level that is in
perfect balance with its surroundings!

• If 0 < y0 < K, then limt!1 y = K: if we start with a small population (i.e., less
than K), the population grows towards the balance population.

• If y0 > K, then limt!1 y = K: if we start with a population that is too large to be
sustained by the available resources, the population decreases towards the balance
population.

The information above is often the main information we are interested in obtaining:
what will happen with the solutions if we wait long enough? And how does this depend
on the initial conditions? Gee, that was quite a bit of work to get that information! Is
there an easier way to get it?

There is: let’s look at the di↵erential equation again:

y

0 = ↵

⇣
1� y

K

⌘
y.

Without solving this equation, we can draw the Phase-line picture: we plot y

0 as a
function of y: in other words we plot the right-hand side of the di↵erential equation. This
is done in Fig. 7.

This simple figure tells us a lot. It shows that whenever y is between 0 and K, the
graph is positive, which means that y

0
> 0. This implies that y will increase. Hence, if

we start somewhere on this interval, with a certain y value, we’ll move to y-values that
are more to the right, until we reach y = K. At that point, we stop because there the
graph has a zero, which implies y

0 = 0, thus y does not change anymore. Similarly, if y

starts o↵ to the right of y = K, the graph is negative, which means that y

0
< 0, y will

decrease: we’ll move to the left, again until we reach y = K. We could also investigate
what happens for y < 0, but such populations are not very interesting.

The two values y = 0 and y = K stand out, because for these values the graph is zero,
thus y

0 = 0, and there is no change once these values are attained. At these y-values
there is no change. Such values are called fixed points, equilibrium solutions, or
equilibrium points.

In general, an equilibrium point of a di↵erential equation is a constant solution of
a di↵erential equation, such that y

0 = 0.
Here’s some more defitions:
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y’=   y(1−y/K)α

y=0 y=K

Figure 7: The phase-line plot for the population growth model

• An equilibrium point is called asymptotically stable if solutions close to it, get
closer to it.

• An equilibrium point is called unstable if solutions close to it get further away.

• An equilibrium point is called semi-stable if some nearby solutions get further
away, and if others get closer.

The phaseline plot contains all this information in a very concise way. For the
previous population example, a more compact version of the phase line plot is shown in
Fig. 8. We can omit the plot of the right-hand side of the di↵erential equation: what
really matters is where that right-hand side is zero. These points are the equilibrium
points. They are indicated in Fig. 8. Once we have these points, all that’s left to do is to
see how the values in between these equilibrium points change. This is indicated using a
left or right arrow. If these arrows point away from an equilibrium point, that equilibrium

y=0 y=K
Figure 8: The compact phase-line plot for the population growth model

point is unstable. If all arrows point towards the equilibrium point, it is asymptotically
stable. Otherwise it is semi-stable. In our example, we have

• y1 = 0 is an unstable equilibrium point.

• y2 = K is an asymptotically stable equilibrium point.
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Let’s do another example:

Example: Consider the di↵erential equation y

0 = ↵(1 � y)2
y(�2 + y), where ↵ is a

positive constant. If we’d be asked to solve this equation, we’re in for quite a bit of
work. On the other hand if we’re asked to determine the equilibrium solutions and their
stability, this is quite easy.

First, we find there are three equilibrium points, namely those y-values that make the
right-hand side zero. Thus y1 = 0, y2 = 1, and y3 = 2 are equilibrium points. Now we
can draw the phase-line plot. It and its compact version are shown in Fig. 9.

y=1y=0 y=2

y=1 y=2y=0

y’=   y(1−y)  (−2+y)α 2

Figure 9: The phase-line plot for y

0 = ↵(1� y)2
y(�2 + y).

From these plots, we obtain immediately that:

• y1 = 0 is an asymptotically stable equilibrium point.

• y2 = 1 is a semi-stable equilibrium point.

• y3 = 2 is an unstable equilibrium point.
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Lecture 6. Exact di↵erential equations

Suppose we have a function y(x), which is defined by

f(x, y) = x

2 + xy

2 = c,

where c is a constant. We could solve this for y, but that would require square roots, so
let’s not. Can we figure out what di↵erential equation y satisfies? Let’s take a derivative
of our equation:

d

dx

�
x

2 + xy

2
�

= 0

) 2x + y

2 + 2xy

dy

dx

= 0,

where we have used the chain rule. Thus, our function y satisfies the di↵erential equation

2xyy

0 + 2x + y

2 = 0.

Now, this is a pretty tough looking equation: it’s nonlinear, and not separable. But we
know its solution, since that’s what we started from. It would be a shame if there wasn’t
a method to solve for it. So, since the world is a nice place and we are all enjoying eternal
bliss, there is a method to solve di↵erential equations like the one above.

Let’s look at this problem in more generality. Suppose we have a function y defined
by the implicit equation

f(x, y) = c,

where c is a constant. Taking a derivative, using the chain rule we get

d

dx

f(x, y) = 0

) @f

@x

+
@f

@y

dy

dx

= 0

@f

@y

y

0 +
@f

@x

= 0.

Thus we have an equation of the form

N(x, y)y0 + M(x, y) = 0.

We know its solution if the following equations hold:
8
>>><

>>>:

M(x, y) =
@f

@x

,

N(x, y) =
@f

@y

.

(1)

In that case the solution is f(x, y) = c. So how do we know if these statements hold?
Well, suppose they do, then certainly by the equality of mixed derivatives

@

2
f

@x@y

=
@

2
f

@y@x

) @M

@y

=
@N

@x

. (2)

28



This is an easy equation to test, given a di↵erential equation of the form

N(x, y)y0 + M(x, y) = 0.

If the equality (2) holds, the di↵erential equation is called exact, and the equations (1)
will have a solution for f(x, y) so that the general solution of the equation is

f(x, y) = c.

Let’s see how we can use this to solve the problem we started with.

Example: Consider the di↵erential equation 2xyy

0 + 2x + y

2 = 0. Then

M = 2x + y

2
, N = 2xy.

First we check if the equation is exact:

@M

@y

= 2y,

@N

@x

= 2y.

Since these are equal, the equation is exact. Now we can proceed to solve (1):
8
>>><

>>>:

M(x, y) =
@f

@x

= 2x + y

2
,

N(x, y) =
@f

@y

= 2xy.

We can solve these equations in the order we prefer. Let’s start with the first equation.
Then

@f

@x

= 2x + y

2

) f =

Z
(2x + y

2)@x + h(y).

I’ve used the notation @x to denote that this is an integration with respect to x, where
we are thinking of y as a constant. This is why the constant of integration h(y) could
possibly depend on it. Proceeding,

f = x

2 + y

2
x + h(y).

We now substitute this in the second equation. This gives

@f

@y

= 2xy + h

0(y) = 2xy

) h

0(y) = 0

) h(y) = 0.

Note that we can let h(y) = 0, instead of h(y) = c, since we’re already incorporating our
integration constant in our general solution f(x, y) = c. Now we can write down what
we found for f(x, y), to write the solution of the di↵erential equation:

f(x, y) = c ) x

2 + y

2
x = c,
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as expected.

Example: Let’s do a more complicated example. Consider

(sin x + x

2
e

y � 1)y0 + (y cos x + 2xe

y) = 0,

a nonlinear di↵erential equation if ever there was one. Here

M = y cos x + 2xe

y
, N = sin x + x

2
e

y � 1.

Let’s check if this di↵erential equation is exact:

@M

@y

= cos x + 2xe

y
,

@N

@x

= cos x + 2xe

y
.

These are equal, thus the equation is exact. Thus
8
>>><

>>>:

M(x, y) =
@f

@x

= y cos x + 2xe

y
,

N(x, y) =
@f

@y

= sin x + x

2
e

y � 1.

Using the first equation:

f =

Z
(y cos x + 2xe

y) @x + h(y)

= y sin x + x

2
e

y + h(y).

Then @f/@y = sin x + x

2
e

y + h

0(y). Plugging this in the second equation gives

sin x + x

2
e

y + h

0(y) = sin x + x

2
e

y � 1

) h

0(y) = �1

) h(y) = �y.

Our final solution is
f(x, y) = y sin x + x

2
e

y � y = c.

Example: Consider
(x2 + xy)y0 + 3xy + y

2 = 0.

Here we have
M = 3xy + y

2
, N = x

2 + xy.

Let’s check if this equation is exact:

@M

@y

= 3x + 2y,

@N

@x

= 2x + y.

Since these are not equal, the equation is not exact. What would happen if we ignored
this and proceded anyways? Let’s give it a try. Then

8
>>><

>>>:

M(x, y) =
@f

@x

= 3xy + y

2
,

N(x, y) =
@f

@y

= x

2 + xy.
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From the first equation we get

f =

Z �
3xy + y

2
�
@x + h(y) =

3

2
x

2
y + y

2
x + h(y).

Substituting this in the second equation to determine h(y) gives

3

2
x

2 + 2xy + h

0(y) = x

2 + xy

) h

0(y) = �1

2
x

2 � xy.

This equation cannot be solved, since h(y) is only allowed to depend on y, not on x.
This happened because the equation is not exact. The exactness condition guarantees
that terms will cancel so that the function we have to determine after having done one
integration only depends on the remaining variable. So, we’re stuck. The equation is not
exact, and we do not know a way of solving it.

Or do we? Let’s take the same equation, but multiply it by x:

x

�
(x2 + xy)y0 + 3xy + y

2
�

= 0

) (x3 + x

2
y)y0 + 3x2

y + xy

2 = 0.

Clearly this equation has the same solutions as the equation we were trying to solve
originally. But now M and N are di↵erent:

M = 3x2
y + xy

2
, N = x

3 + x

2
y.

Would, by chance, this equation be exact? Let’s try:

@M

@y

= 3x2 + 2xy,

@N

@x

= 3x2 + 2xy.

These are equal, and the equation is exact! Sweet. Let’s solve it.
8
>>><

>>>:

M(x, y) =
@f

@x

= 3x2
y + xy

2
,

N(x, y) =
@f

@y

= x

3 + x

2
y.

Just for the heck of it, let’s solve the second equation first: (try as an exercise to do it
with the first equation first)

f =

Z �
x

3 + x

2
y

�
@y + h(x)

= x

3
y +

1

2
x

2
y

2 + h(x).

Plugging this in the first equation gives

3x2
y + xy

2 + h

0(x) = 3x2
y + xy

2

) h

0(x) = 0

) h(x) = 0.

Finally, the solution is:

f(x, y) = x

3
y +

1

2
x

2
y

2 = c.
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Lecture 7. Substitutions for first-order di↵erential
equations

Sometimes integrals become a lot simpler to evaluate if you use the right substitution.
The same is true for di↵erential equations. Unfortunately, just like for integrals, it takes
experience to get a feel for what the “right” substitution is.

In this lecture, you’ll learn how to use a substitution on a given di↵erential equation,
but I don’t expect you to come up with the substitution to use. The ability to do this
will come in time and by doing an unreasonable amount of homework problems.

Example: Consider the di↵erential equation

y

0 =
y

2 + 2xy

x

2
.

This equation is nonlinear, non-separable and not exact. (verify this!) Let’s rewrite it:

y

0 =
⇣

y

x

⌘2

+ 2
⇣

y

x

⌘
.

This suggests that the di↵erential equation might be simpler in terms of the function
u(x) = y(x)/x. In order to see whether this is true, let’s find a di↵erential equation that
u(x) satisfies. We’re hoping this will be a simpler di↵erential equation than the one we’re
starting with. If not, we’ll have to try something else.

Using a substitution on a di↵erential equation proceeds in four steps:

1. Write down the substitution and the inverse substitution: here

u(x) =
y(x)

x

, y(x) = xu(x).

2. Take a derivative of the new function:

u

0(x) =
xy

0(x)� y(x)

x

2
,

where we have used the chain rule.

3. Replace y0 using the original di↵erential equation:

u

0 =
xy

0 � y

x

2

=
x

y2+2xy
x2 � y

x

2

=
y2

x
+ 2y � y

x

2

=
y

2
/x + y

x

2

=
y

2

x

3
+

y

x

.
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4. Replace y, using step 1:

u

0 =
y

2

x

3
+

y

x

=
x

2
u

2

x

3
+

xu

x

2

=
u

2

x

+
u

x

=
u

2 + u

x

.

Now we have a new di↵erential equation, expressing u

0 in terms of x and u. This new
equation is separable, so we proceed to solve it. There’s two cases.

- Case u

2 + u = 0. Then we cannot divide by u

2 + u. This happens if u = 0 or
u = �1. This corresponds to y = 0 or y = �x. You can easily check that these are
indeed solutions of the original di↵erential equation.

- Case u

2 + u 6= 0. Then
Z

1

u(u + 1)
du =

Z
1

x

dx + c

= ln x + c

= ln x + ln ĉ

= ln(xĉ).

To do the integral on the left we need partial fractions:

1

u(u + 1)
=

A

u

+
B

u + 1

) 1 = A(u + 1) + Bu

) A + B = 0, A = 1

) B = �1, A = 1.

We get

ln(xĉ) =

Z ✓
1

u

� 1

u + 1

◆
dx

= ln u� ln(u + 1)

= ln
u

u + 1
.

This gives

u

u + 1
= ĉx

) u = ĉx(u + 1)

) u(1� ĉx) = ĉx

) u =
ĉx

1� ĉx
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In terms of y, we get
y

x

=
ĉx

1� ĉx

) y =
ĉx

2

1� ĉx

.

Thus all solutions are

y = 0, y = �x, y =
ĉx

2

1� ĉx

.

Note that if we were unable to solve for y at the end, we’d still be able to find an implicit
solution for y.

Let’s summarize the steps we’ll use to work with a substitution u = u(x, y) =
u(x, y(x)) and a di↵erential equation y

0 = f(x, y):

1. The inverse substitution: y = y(x, u).

2. Take a derivative of the new variable: u

0 =
@u

@x

+
@u

@y

y

0, by the chain rule.

3. Use the di↵erential equation: u

0 =
@u

@x

+
@u

@y

f(x, y) = F (x, y, u).

4. Use the inverse substitution: u

0 = F (x, y(x, u), u) = G(x, u).

This all leads a new di↵erential equation u

0 = G(x, u) for the new function.

Example: Consider the equation

x

2
y

0 + 2xy = y

3
,

which is (check this!) nonlinear, non-separable and not exact. We’ll solve it using the
substitution v = 1/y2. Note that by using this substitution we are excluding the solution
y = 0, which we have to add in separately.

1. The inverse substitution: y = ±v

�1/2.

2. Take a derivative of the new variable: v

0 = � 2

y

3
y

0, by the chain rule.

3. Use the di↵erential equation: v

0 = � 2

y

3

y

3 � 2xy

x

2
=
�2 + 4x 1

y2

x

2
.

4. Use the inverse substitution: v

0 =
�2 + 4xv

x

2
.

We have found a new di↵erential equation for the function v, which is indeed simpler
than the original equation: the new equation is linear!

v

0 � 4

x

v = � 2

x

2
.

Step 0. p = �4/x, q = �2/x2
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Step 1. µ = e

R
pdx = e

R �4
x

dx = e

�4 ln x =
1

x

4
.

Step 2. v =

R
µqdx + c

µ

=

R
x

�4(�2)x�2
dx + c

x

�4
= x

4

✓
�2

Z
x

�6
dx + c

◆
= x

4

✓
2

5
x

�5 + c

◆
=

2

5
x

�1 + cx

4 =
2 + cx

5

5x
.

Thus y = ±v

�1/2 = ±
r

5x

2 + cx

5
. This, together with y = 0, provides the general

solution to the di↵erential equation. On a sidenote, the original di↵erential equation may
also be rewritten as (x2

y)0 = y

3, which leads to another substitution to solve this equation
(try it).

Example: Let’s look at one more example:

y

0 = 1 + x

2 � 2xy + y

2 = 1 + (y � x)2
.

This second form of the equation suggests that perhaps u = y � x is a good idea for a
substitution. Let’s try it.

1. The inverse substitution: y = u + x.

2. Take a derivative of the new variable: u

0 = y

0 � 1.

3. Use the di↵erential equation: u

0 = 1 + (y � x)2 � 1 = (y � x)2.

4. Use the inverse substitution: u

0 = u

2.

This equation is separable:
Z

1

u

2
du =

Z
dx + c) �1

u

= x + c) u = � 1

x + c

,

so that

y = x� 1

x + c

.
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Lecture 8. Second-order, constant-coe�cient equa-
tions

In this lecture, we’ll look at second-order equations for the first time. All the second-order
equations we’ll consider here will be linear. We won’t look at nonlinear equations again
until we get to nonlinear systems, much later in these notes.

Any second-order linear equation is of the form

r(x)y00 + p(x)y0 + q(x)y = g(x),

where r(x), p(x) and q(x) may be functions of x. For now, we’ll assume they are constants:
r(x) = a, p(x) = b and q(x) = c, with a, b and c constant. Further, we’ll start with the
homogeneous case, i.e., the case where g(x) = 0. Thus, we’ll consider

ay

00 + by

0 + cy = 0,

where y = y(x) is the function we’re looking for. Let’s introduce some shorthand. Let

L[y] = ay

00 + by

0 + cy,

so that the di↵erential equation simply is L[y] = 0. Let’s discuss a few properties of this
equation.

Theorem 1 (Principle of Superposition) If y1 and y2 are independent solutions of

this equation, then y(x) = c1y1(x) + c2y2(x) is the general solution.

Proof: Note that the general solution will depend on two constants, since we are now
dealing with a second-order equation.

L[y] = ay

00 + by

0 + cy

= a(c1y
00
1 + c2y

00
2) + b(c1y

0
1 + c2y

0
2) + (c1y1 + c2y2)

= c1(ay

00
1 + by

0
1 + cy1) + c2(ay

00
2 + by

0
2 + cy2)

= c1L[y1] + c2L[y2]

= c10 + c20

= 0.

We’ve used that L[y1] = 0 and L[y2] = 0, since y1 and y2 are solutions. Thus y1 =
c1y1 + c2y2 is also a solution, which is what we had to prove.

We can use this theorem to get new solutions from known ones: if y1 and y2 are
solutions, then so are y3 = (y1 + y2)/2 and y2 = (y1 � y2)/2. These are easily obtained
by choosing c1 = c2 = 1/2, and c1 = 1/2, c2 = �1/2 in the theorem.

In order for the theorem to hold, y1 and y2 have to be “independent”. What does this
mean? We’ll define this properly soon, but for the moment it su�ces to say that y1 and
y2 are not a multiple of each other. If this happens, say y2 = ↵y1, for some constant ↵,
then
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y = c1y1 + c2y2

= c1y1 + c2↵y1

= (c1 + c2↵)y1

= c3y1,

where c3 = c1 + c2↵ is another constant. We see that in this case, our proposed general
solution y only depends on one constant. That’s not enough!

Here’s why this theorem absolutely rocks: in order to find the general
solution of

L[y] = 0,

it su�ces to find two solutions y1 and y2! Awesome!

It’s easy to find two such solutions: guess

y = e

�x
,

for some constant �, to be determined. Then

y

0 = �e

�x
, y

00 = �

2
e

�x
.

Plugging all this in, we get

a�

2
e

�x + b�e

�x + ce

�x ?
= 0

e

�x
�
a�

2 + b� + c

� ?
= 0

a�

2 + b� + c

?
= 0,

since e

�x is never zero. Thus, in order to find solutions, we have to choose � to be a
solution of the quadratic equation

a�

2 + b� + c = 0.

This equation is known as the Characteristic equation of the di↵erential equation.
From it, we get two solutions for �:

�1,2 =
�b ±

p
b

2 � 4ac

2a
.

This gives two solutions of the original di↵erential equation, namely

y1 = e

�1x
, y2 = e

�2x
.

Using our theorem, we find that the general solution is

y = c1e
�1x + c2e

�2x
.
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Thus, we’ve constructed the general solution for a second-order linear equations with
constant coe�cients, and all we’ve had to do was solve a quadratic equation!

This works very well if �1 and �2 are both real, and di↵erent. In the other cases, we’ll
have to do a bit of extra work. Let’s look at some examples where the above does work.

Example: Consider the initial-value problem
⇢

y

00 � y = 0
y(0) = 2, y

0(0) = �1
,

Note that we’re specifying two initial conditions, since we have two constants to deter-
mine. Let’s start with the characteristic equation: we have a = 1, b = 0, c = �1.

�

2 � 1 = 0 ) �1 = 1, �2 = �1,

from which y1 = e

x, y2 = e

�x, and the general solution is

y = c1e
x + c2e

�x
.

Since we’ll need y

0 to use the second initial condition, let’s calculate it now: y

0 = c1e
x �

c2e
�x. Plugging in the two initial conditions, we get

y(0) = c1 + c2, y

0(0) = c1 � c2,

so that c1 + c2 = 2 and c1 � c2 = �1. Adding and subtracting these two equations we
find that c1 = 1/2 and c2 = 3/2. Finally, the solution of the initial-value problem is

y =
1

2
e

x +
3

2
e

�x
.

Example: Let
y

00 + 5y0 + 6y = 0.

The characteristic equation is

�

2 + 5� + 6 = 0

) (� + 2)(� + 3) = 0

) �1 = �2, �2 = �3,

and thus y1 = e

�2x, y2 = e

�3x. The general solution is

y = c1y1 + c2y2 = c1e
�2x + c2e

�3x
.

Example: Let’s consider y

00� y = 0 again. We know already that y1 = e

x and y2 = e

�x.
From this it follows that y3 = 2y1 = 2ex is also a solution. Could we use y1 and y3 to
construct the general solution? Let’s try.

y = c1y1 + c3y3

= c1e
x + c32e

x

= (c1 + 2c3)e
x
.
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Clearly this solution is not the general solution that we are looking for: for one, it does
not contain the known solution y2 = e

�x as a special case. The solutions y1 and y3 above
are called linearly dependent.

Definition. Two functions f(x) and g(x) are called linearly independent if the equa-
tion

c1f(x) + c2g(x) = 0, for all x,

can only be satisfied by choosing c1 = 0, c2 = 0. Two functions that are not linearly
independent are called linearly dependent.

Example: f = e

x and g = 2ex are linearly dependent because

�2f(x) + g(x) = 0,

so c1 = �2 and c2 = 1. If the only choice was to choose them both zero, the functions
would be independent.

Theorem 2 Two functions f and g are linearly dependent if their Wronskian

W (f, g)(x) = f(x)g0(x)� f

0(x)g(x) = 0.

Proof: If f and g are linearly dependent, then we can find constants c1 and c2, not both
zero, so that

c1f + c2g = 0, for all x.

Then also
c1f

0 + c2g
0 = 0, for all x.

Now, let’s assume that f 6= 0, otherwise we’ll switch the roles of f and g. Then

c1 = �c2
g

f

) �c2
g

f

f

0 + c2g
0 = 0

) c2

f

(fg

0 � f

0
g) = 0.

Note that c2 6= 0, since otherwise c1 would also be zero, which would imply the functions
are linearly independent. Thus

fg

0 � f

0
g = 0 ) W (f, g)(x) = 0,

which is what we had to prove.

Example: W (ex
, 2ex) = e

x(2ex) � e

x(2ex) = 0, since the two functions are linearly
dependent.

Example: W (ex
, e

�x) = e

x(�e

�x) � e

x(e�x) = �1 � 1 = �2 6= 0, since the functions
are linearly independent.

Now we can rephrase our awesome theorem more carefully:

Theorem 3 If y1 and y2 are two solutions of L[y] = 0 and their Wronskian W (y1, y2) 6=
0, then the general solution is y = c1y1 + c2y2.
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Lecture 9. The Wronskian and linear independence

In the previous lecture, we learned how to solve

ay

00 + by

0 + cy = 0,

using three steps:

1. Characteristic equation: a�

2 + b� + c = 0

2. Fundamental solutions: y1 = e

�1x, y2 = e

�2x

3. General solution by superposition: y = c1y1 + c2y2

We restricted ourselves mainly to constant-coe�cient equations, but our superposition
theorem also holds for equations of the form

y

00 + p(x)y0 + q(x)y = 0.

Also in this case, the general solution is given by y = c1y1 + c2y2, where y1 and y2 are
two linearly independent solutions of y

00 + p(x)y0 + q(x)y = 0. To see if two solutions are
linearly independent, we calculate their Wronskian

W (y1, y2) = y1y
0
2 � y

0
1y2.

If W (y1, y2) 6= 0, the two solutions y1 and y2 are linearly independent.
We’ve already seen how to solve constant-coe�cient equations when the roots of the

characteristic equation are real and di↵erent. In this lecture, we’ll see how to solve the
case where the two roots �1 and �1 are equal: �1 = �2 (note that they are automatically
real in this case). It is clear that our previous plan of attach won’t work, since we now
have y1 = y2, and we don’t have two linearly independent solutions.

Theorem 4 (Abel’s theorem) Let y1 and y2 be any two solutions of y

0 + p(x)y0 +
q(x)y = 0, then

W (y1, y2) = ce

�
R

p(x)dx
,

where c is a constant.

Proof: By definition W (y1, y2) = y1y
0
2 � y

0
1y2. Thus

W

0 = y

0
1y
0
2 + y1y

00
2 � y

00
1y2 � y

0
1y
0
2

= y1y
00
2 � y

00
1y2

= y1(�p(x)y02 � q(x)y2)� y2(�p(x)y01 � q(x)y1)

= �p(x)(y1y
0
2 � y

0
1y2)� q(x)y1y2 + q(x)y2y2

= �p(x)W,
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from which

dW

dx

= �p(x)W

)
Z

dW

W

= �
Z

p(x)dx + ↵

) ln W = �
Z

p(x)dx + ↵

) W = e

�
R

p(x)dx+↵

) W = ce

�
R

p(x)dx
,

where ↵ and c = e

↵ are constants. This is what we had to prove.

Hence, if y1 and y2 are two linearly dependent solutions, c = 0 in Abel’s theorem.
We can now use Abel’s theorem to get a second linearly independent solution of a

second-order linear di↵erential equation if we already know a first one. This is known as
reduction of order, because it reduces the problem of finding a solution of a second-
order equation to that of solving a related first-order equation. Here’s how this works:
supposed we know y1, but we don’t know y2. Then, from Abel’s theorem we have that

y1y
0
2 � y

0
1y2 = W = ce

�
R

p(x)dx
.

Note that the entire right-hand side is known. We have to choose c to be nonzero, since
we want a linearly-independent second solution. This equation is nothing but a first-order
linear equation for y2, given y1. This is the announced reduction of order. Let’s solve
this first-order equation: dividing by y

2
1 we get

1

y1
y

0
2 �

y

0
1

y

2
1

y2 =
W

y

2
1

) d

dx

✓
y2

y1

◆
=

W

y

2
1

) y2

y1
=

Z
W

y

2
1

dx

) y2 = y1

Z
W

y

2
1

dx.

We don’t really care about the integration constant in this integral, as we’re only in-
terested in finding one extra solution. With this second solution, we may construct the
general solution using the superposition theorem. Thus, to find this second solution, we
first use Abel’s theorem to find the Wronskian W , after which we use

y2 = y1

Z
W

y

2
1

dx

to get the second solution.

Example: Consider the equation 2x2
y

00 + 3xy

0 � y = 0, for x > 0. Let’s check that
y1 = 1/x is a solution of this equation:

y

0
1 = � 1

x

2
, y

00
1 =

2

x

3
,
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from which

2x2
y

00
1 + 3xy

0
1 � y1 = 2x2 2

x

3
� 3x

1

x

2
� 1

x

=
4

x

� 4

x

� 1

x

!
= 0.

Thus y1 = 1/x is a solution. Now we use the method above to find a second solution y2,
linearly independent of the first one. First we need to compute the Wronskian W . Using
Abel’s theorem

W = ce

�
R

p(x)dx
.

For our equation p(x) = 3x/(2x2) = 3/(2x), since we need to write the di↵erential
equation so that the coe�cient of y

00 is one, in order to use Abel’s theorem. Thus

W = ce

� 3
2

R 1
x

dx = ce

� 3
2 ln x = cx

�3/2
.

There’s no need to choose c at this point. We can choose it later when it is convenient.
The reduction-of-order formula gives

y2 = y1

Z
W

y

2
1

dx

=
1

x

Z
cx

�3/2

x

�2
dx

=
c

x

Z
x

1/2
dx

=
c

x

x

3/2

3/2

=
2

3
cx

1/2

=
p

x,

where we have chosen c = 3/2, for convenience. Any choice but zero will work. In
summary, our general solution is

y = c1y1 + c2y2 = c1
1

x

+ c2

p
x.

Example: This is an important example: it will allow us to solve the case of linear,
constant-coe�cient equations where the roots of the characteristic equation are equal:
�1 = �2. Thus, let’s start with such an equation:

ay

00 + by

0 + cy = 0,

with characteristic equation a�

2 + b� + c = 0, and

�1 = �2 = � b

2a
, and b

2 = 4ac.

Our original method only results in one solution

y1 = e

�1x
.
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Let’s use the reduction-of-order method to get a second one. First, we use Abel’s theorem
to calculate the Wronskian. Note that we have p(x) = b/a. Also, let’s use ↵ for the
constant in Abel’s theorem, as the equation already has a c in it.

W = ↵e

�
R

p(x)dx

= ↵e

�bx/a
.

Using reduction of order,

y2 = y1

Z
W

y

2
1

dx

= e

�1x

Z
↵e

�bx/a

e

2�1x
dx

= ↵e

�1x

Z
e

�( b

a

+2�1)x
dx

= ↵e

�1x

Z
dx

= ↵e

�1x
x

= xe

�1x
.

We have chosen ↵ = 1, and used that �1 = �b/(2a). Thus, we get a second, linearly
independent solution by multiplying the first one by x. That’s easy enough. The general
solution of a linear, second-order equation with constant coe�cients that has both roots
of the characteristic equation equal is

y = c1y1 + c2y2 = c1e
�1x + c2xe

�1x = (c1 + c2x)e�1x
.

Example: Consider the equation y

00 + 2y0 + y = 0. Its characteristic equation is �

2 +
2� + 1 = 0, from which it follows that �1 = �2 = �1. Thus y1 = e

�x, and y2 = xe

�x,
using the result from the previous example. The general solution is

y = c1y1 + c2y2 = (c1 + c2x)e�x
.
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Lecture 10. Complex roots of the characteristic equa-
tion

In this lecture, we’ll see how to solve

ay

00 + by

0 + cy = 0,

when the characteristic equation a�

2 + b� + c = 0 has complex roots. Then

�1,2 =
�b ±

p
b

2 � 4ac

2a
,

with b

2 � 4ac < 0, or 4ac� b

2
> 0. Thus

�1,2 =
�b

2a
± i

p
4ac� b

2

2a
,

where i is the square root of unity, i

2 = �1. It is also referred to as the imaginary unit.
Following what we did before, we have two solutions

y1 = e

�1x
, y2 = e

�2x

) y1 = e

(↵+i�)x
, y2 = e

(↵�i�)x
,

with ↵ = �b/(2a), the real part of �1 or �2, and � =
p

4ac� b

2
/(2a), the imaginary part

of �1. Thus
y1 = e

↵x
e

i�x
, y2 = e

↵x
e

�i�x
.

But what does e

±i�x mean? We’ll now see two di↵erent ways to convince you that

e

i�x = cos �x + i sin �x,

e

�i�x = cos �x� i sin �x.

These are known as Euler’s formulae.

Method 1: power series

Using the Taylor series of the exponential and the trig functions, we get

e

i�x = 1 + i�x +
(i�x)2

2!
+

(i�x)3

3!
+ +

(i�x)4

4!
+ · · ·

= 1 + i�x� �

2
x

2

2!
� i

�

3
x

3

3!
+

�

4
x

4

4!
+ · · ·

= 1� �

2
x

2

2!
+

�

4
x

4

4!
+ · · · + i

✓
�x� �

3
x

3

3!
+ · · ·

◆

= cos �x + i sin �x.

This proves the first formula. However, throughout, we have assumed that the Taylor
series that we know to be valid for real arguments are also valid for complex arguments.
So the above is not exactly waterproof.

Using the symmetry properties of the trig functions, we have

e

�i�x = cos(��x) + i sin(��x) = cos �x� i sin �x,

which proves the second formula.
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Method 2: di↵erential equations

Let u = e

i�x, then

u

0 = i�e

i�x
, u

00 = (i�)2
e

i�x = ��

2
e

i�x
.

We’ve assumed that the derivative rules for the exponential hold as before, even though
the exponent is not real. There’s some logic to this: if we intend to extend the definition
of the exponential to complex arguments, then we should insist that the properties we
hold to be true, remain true in this more general setting. Otherwise we’re not gaining
much by doing this extension. Proceeding, we see that u = e

i�x satisfies the di↵erential
equation

u

00 + �

2
u = 0,

with initial conditions u(0) = 1, u

0(0) = i�. These were obtained by plugging in x = 0 to
our explicit expressions for u and u

0. Thus, u(x) is the unique solution of the initial-value
problem ⇢

u

00 + �

2
u = 0

u(0) = 1, u

0(0) = i�.

Now consider v = cos �x + i sin �x. Then

v

0 = �� sin �x + i� cos �x,

v

00 = ��

2 cos �x� i�

2 sin �x = ��

2
v.

Further, by plugging in x = 0 we get v(0) = 1, v

0(0) = i�. In other words, v(x) satisfies
the same initial-value problem that u(x) satisfies. We have to conclude that u(x) = v(x),
which is what we wanted to prove.

Thus our two fundamental solution are

⇢
y1 = e

↵x(cos �x + i sin �x),
y2 = e

↵x(cos �x� i sin �x).

Unfortunately these are not real valued. Awesome theorem to the rescue! Indeed, if y1

and y2 are solutions, then so are

y3 =
y1 + y2

2
and y4 =

y1 � y2

2i
.

This gives

y3 = e

↵x cos �x, y4 = e

↵x sin �x.

Using these as fundamental solutions, the general solution is

y = c1y3 + c2y4

= c1e
↵x cos �x + c2e

↵x sin �x

= e

↵x(c1 cos �x + c2 sin �x).
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Example: Consider the equation y

00 + y

0 + y = 0. Its characteristic equation is

�

2 + � + 1 = 0

) �1,2 =
�1 ±

p
�3

2

=
�1 ± i

p
3

2

) ↵ = �1

2
, � =

p
3

2
,

so that the fundamental solutions are

y1 = e

�x/2 cos

p
3

2
x, y2 = e

�x/2 sin

p
3

2
x.

The general solution is

y = c1y1 + c2y2

= c1e
�x/2 cos

p
3

2
x + c2e

�x/2 sin

p
3

2
x.
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Summary of solving constant coe�cient equations

To solve the linear second-order, constant-coe�cient equation

ay

00 + by

0 + cy = 0

we proceed using the following steps:

1. Solve the characteristic equation:

a�

2 + b� + c = 0.

This equation has two roots, �1 and �2.

2. Write down the fundamental solutions:

i) �1 6= �2, and both are real. Then

y1 = e

�1x
, y2 = e

�2x
.

ii) �1 = �2 (then they’re both real). Then

y1 = e

�1x
, y2 = xe

�1x
.

iii) �1 6= �2, complex conjugates of each other: �1,2 = ↵ ± i�. Then

y1 = e

↵x cos �x, y2 = e

↵x sin �x.

3. Write down the general solution:

y = c1y1 + c2y2.
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Lecture 11. Euler equations

So far, we’ve mainly looked at equations with constant coe�cients:

ay

00 + by

0 + cy = 0.

Many of our results are valid for more general linear equations of the form

y

00 + p(x)y0 + q(x)y = 0.

An important class of equations where we can also solve everything explicitly is the class
of Euler equations. These are of the form

x

2
y

00 + ↵xy

0 + �y = 0, x > 0.

So here p = ↵x/x

2 = ↵/x and q = �/x

2.
In this case, we guess fundamental solutions of the form

y = x

s
.

Then

y

0 = sx

s

) y

00 = s(s� 1)xs�2
.

Substituting this into our di↵erential equations, we get

x

2
y

00 + ↵xy

0 + �y = 0

) x

2
s(s� 1)xs�2 + ↵xsx

s�1 + �x

s = 0

) [s(s� 1) + ↵s + �] xs = 0,

and thus we need to impose that s is chosen so that

s

2 + (↵� 1)s + � = 0 .

This is called the indicial equation. As in the case of equations with constant coe�cients
there are three cases, depending on the solutions of this quadratic equation. The roots
are

s1,2 =
1� ↵ ±

p
(↵� 1)2 � 4�

2
.

Case 1: s

1

6= s

2

, both real

Then y1 = x

s1 and y2 = x

s2 . The general solution is

y = c1x
s1 + c2x

s2
.
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Case 2: s

1

= s

2

, real

Then y1 = x

s1 . In order to get a a second linearly independent solution, we need to use
reduction of order. In order to do so, we use Abel’s theorem first. We get

W = ce

�
R

p(x)dx

= ce

�
R

↵

x

dx

= ce

�↵ ln x

= ce

ln x�↵

= cx

�↵
.

Using the reduction-of-order formula, we get

y2 = y2

Z
W

y

2
1

dx

= x

s1

Z
cx

�↵

x

2s1
dx

= cx

s1

Z
x

�↵�2s1
dx.

But s1 = (1 � ↵)/2, which means that 2s1 = 1 � ↵, so the exponent of the integrand is
�1. Thus

y2 = cx

s1

Z
x

�1
dx = cx

s1 ln x = x

s1 ln x,

where we have chosen c = 1. The general solution in this case is

y = c1x
s1 + c2x

s1 ln x.

Case 3: s

1,2 complex

Then s1,2 = ⌘ ± iµ. Then x

s1 is a solution, as is x

s2 . Unfortunately, these are complex
solutions. We’d prefer to have real-valued solutions. We’ve seen before that for a linear
equation, the real part of a complex-valued solution, as well as its imaginary part are both
solutions in their own right. This is because these solutions are almost (up to constant
factors of 2 and 2i) sums and di↵erences of the two complex solutions.

Let’s see what these real and imaginary parts are in this case. We have

x

s1 = x

⌘+iµ

= x

⌘
x

iµ

= x

⌘
e

ln xiµ

= x

⌘
e

iµ ln x

= x

⌘ (cos(µ ln x) + i sin(µ ln x)) ,

so that ⇢
y1 = x

⌘ cos(µ ln x)
y2 = x

⌘ sin(µ ln x)
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are two linearly independent fundamental solutions. The general solution is

y = c1x
⌘ cos(µ ln x) + c2x

⌘ sin(µ ln x).

This covers all cases for the Euler equation.

Example: Consider the equation x

2
y

00 + y = 0. This is an Euler equation with ↵ = 1,
� = 0. The indicial equation is

s

2 � s + 1 = 0 ) s1,2 =
1 ±

p
�3

2
=

1

2
± i

p
3

2
.

The fundamental solutions are
8
>>><

>>>:

y1 = x

1/2 cos

p
3

2
x =

p
x cos

p
3

2
x,

y2 = x

1/2 sin

p
3

2
x =

p
x sin

p
3

2
x,

and the general solution is

y = c1y1 + c2y2 = c1

p
x cos

p
3

2
x + c2

p
x sin

p
3

2
x.

Example: Consider the equation x

2
y

00 � 3xy

0 + 4y = 0. Here ↵ = �3, � = 4. The
indicial equation is

s

2 � 4s + 4 = 0 ) s1 = s2 = 2.

As a consequence, our fundamental solutions are

y1 = x

2
, y2 = x

2 ln x,

and the general solution is

y = c1y1 + c2y2 = c1x
2 + c2x

2 ln x.
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Lecture 12. Nonhomogeneous equations: undeter-
mined coe�cients

Now that we know how to solve the homogeneous equation

L[y] = ay

00 + by

0 + cy = 0,

let’s investigate how we could go about solving the nonhomogeneous equation

L[y] = ay

00 + by

0 + cy = g(x).

Theorem 5 The general solution of L[y] = g(x) is y = yH + yP , where yH = c1y1 + c2y2

is the general solution of the homogeneous problem L[y] = 0, and yP is any particular

solution of L[y] = g(x).

Note that y1 and y2 are the fundamental solutions of the homogeneous problems we’ve
been discussing up to this point. What this theorem says is that in order to solve the
nonhomogeneous problem, we have to solve the homogeneous problem first. Having done
so, all we need is one solution of the full equation. Let’s prove this theorem.

Proof:
L[y] = L[yH + yP ] = L[yH ] + L[yP ] = 0 + L[yP ] = g(x).

Furthermore, y depends on two constants c1 and c2, which is required for a second-order
problem. This finishes the proof.

What would be the e↵ect of you and your neighbor picking di↵erent particular solu-
tions yP1 and yP2? The answer is that it doesn’t matter. Here’s why: calculate

L[yP1 � yP2 ] = L[yP1 ]� L[yP2 ] = g(x)� g(x) = 0.

We have to conclude that the di↵erence of any two particular solutions yP1 � yP2 is a
solution of the homogeneous problem. But all solutions of the homogeneous problems
can be written as a linear combination of the fundamental solutions y1 and y2. Thus

yP1 � yP2 = c3y1 + c4y2.

Constructing the general solution with yP1 or yP2 gives

yP1 : y = c1y1 + c2y2 + yP1

= c1y1 + c2y2 + yP2 + c3y1 + c4y2

= (c1 + c3)y1 + (c2 + c4)y2 + yP2

yP2 : y = c1y1 + c2y2 + yP2 .

Thus, working with a di↵erent particular solution only a↵ects the value of the arbitrary
constants. So, it is irrelevant which particular solution we use.

Example: Consider the equation y

00+3y0�4y = 1. We need to calculate the homogeneous
solution first. The characteristic equation is

�

2 + 3�� 4 = 0 ) (� + 4)(�� 1) = 0 ) �1 = �4, �2 = 1.
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Thus the homogeneous solution is

yH = c1e
�4x + c2e

x
.

Next we need to find a particular solution. Since the right-hand side is just a constant,
maybe guessing a constant will work? Let’s give it a shot: guess

yP = A

) y

0
P = 0

) y

00
P = 0.

Substituting these into the di↵erential equation gives

�4A = 1 ) A = �1

4
.

Thus yP = �1/4, and the general solution is

y = yH + yP = c1e
�4x + c2e

x � 1

4
.

That was not too hard. Now, how do we find particular solutions? Will it
always be this easy? No. We’ll see a general method for finding particular solutions in
the next lecture. However, in many cases there is a better (meaning simpler) method. The
previous example illustrates the principle of this method, which is known as the method
of undetermined coe�cients: based on the form of the right-hand side, we choose a
form for a particular solution. This form will have some undetermined coe�cients in it.
Plugging in gives us conditions on these coe�cients so that our guess actually works. It
may happen that it is not possible to satisfy the conditions we get and our guess fails.
In order to prevent this from happening, we’d like to come up with some rules that tell
us how to guess. We’ve already seen one such rule:

g(x) is constant ) guess a constant: yP = A.

Example: Consider the equation y

00 + 3y0 � 4y = 3e2x. This equation has the same
homogeneous part as the previous one, thus yH = c1e

�4x + c2e
x. Since the derivative of

an exponential returns the same exponential, we could try to guess an exponential for the
particular solution. It should cancel from the entire equation, leaving us with a condition
on its coe�cient. So, let’s try

yP = Ae

2x

) y

0
P = 2Ae

2x

) y

00
P = 4Ae

2x
.

Substitution in the equation gives
�
4Ae

2x
�

+ 3
�
2Ae

2x
�
� 4

�
Ae

2x
�

= 3e2x

) 4A + 6A� 4A = 3

) 6A = 3

) A =
1

2
,
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and our guess for the particular solution works if we choose A = 1/2. Thus

yP =
1

2
e

2x
,

and the general solution is

u = yH + yP = c1e
�4x + c2e

x +
1

2
e

2x
.

This leads us to the exponential rule:

g(x) = ↵e

x ) guess the same exponential: yP = Ae

x.

A third rule is the Polynomial rule:

g(x) = ↵Nx

N + ↵N�1x
N�1 + · · ·↵1x + ↵0 )

yP = ANx

N + AN�1x
N�1 + · · ·A1x + A0.

This rule makes sense: in order to get an x

N on the right, we definitely need to put
that degree in on the left. However, upon doing so, we’ll get terms of lower degree on the
left, because of the derivatives. That’s why we need all terms of the polynomial, even
though they may not appear on the right-hand side.

Example: Consider y

00+3y0�4y = 4x2. Again yH = c1e
�4x+c2e

x. The nonhomogeneous
part is a polynomial of degree 2, so we’ll guess

yP = Ax

2 + Bx + C

) y

0
P = 2Ax + B

) y

00
P = 2A.

Substituting this in the equation gives

2A + 3(2Ax + B)� 4(Ax

2 + Bx + C) = 4x2 � 1.

This equation has to hold for all x. In order to satisfy it, we can equate the coe�cients
of equal powers of x on both sides. We get:

x

2 : �4A = 4

x

1 : 6A� 4B = 0

x

0 : 2A + 3B � 4C = 0.

This gives A = �1, B = �3/2, and C = �13/8. We find

yP = �x

2 � 3

2
x� 11

8
.

We see that determining these coe�cients merely requires some simple algebra. It may
have been tempting to just try yP = Ax

2, since only an x

2 term appears in the right-hand
side. Note that this would not have worked. If you’re not convinced, try it!

A fourth rule is the Exponential-polynomial rule:
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g(x) = e

�x
�
↵Nx

N + ↵N�1x
N�1 + · · ·↵1x + ↵0

�
)

yP = e

�x
�
ANx

N + AN�1x
N�1 + · · ·A1x + A0

�
.

This rule is also sensible: every time we’ll take derivative of an exponential multiplied
by an polynomial of degree N , we’ll get back the same exponential, multiplied by a
di↵erent polynomial of degree N . Even if g(x) only contains a few terms of the polynomial,
we’ll include all terms of lower degree in our guess for yP as well, as before.

A fifth rule is the Cosine-sine rule:

g(x) = ↵ cos !x + � sin !x)
yP = A cos !x + B sin !x.

Every time we’ll take a derivative of a sine or cosine, we’ll get the other one. This is
why we include both, even when g(x) contains only one of them.

Example: Consider y

00 + 3y0 � 4y = 2 sin x. Using the Cosine-sine rule, we guess

yP = A cos x + B sin x

) y

0
P = �A sin x + B cos x

) y

00
P = �A cos x�B sin x.

Substituting these in our equation gives

�A cos x�B sin x + 3 (�A sin x + B cos x)� 4 (A cos x + B sin x) = 2 sin x.

Equating the coe�cients of sin x and cos x gives two equations for A and B:

sin x : �B � 3A� 4B = 2 ) �3A� 5B = 2,

cos x : �A + 3B � 4A = 0 ) �5A + 3B = 0.

Solving these equations gives A = �3/17 and B = �5/17 (check!) so that the particular
solution is

yP = � 3

17
cos x� 5

17
sin x.

Note that we needed both sin x and cos x in order to find a particular solution, although
only sin x appeared in g(x).

A sixth rule is the Polynomial-Cosine-sine rule:

g(x) = Pn(x) cos !x + Qm(x) sin !x)
yP = SN(x) cos !x + TN(x) sin !x.

Here Pn(x) and Qm(x) are given polynomials of degree n and m respectively. Then
SN(x) and TN(x) are polynomials of degree N , where N is the maximum of n and m.
Seeing that this rule works is an easy consequence of the product rule and the previous
guessing rules.

Finally we have the seventh rule, the mother of all rules: the Polynomial-sine-
cosine-exponential rule.
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g(x) = e

↵x (Pn(x) cos !x + Qm(x) sin !x))
yP = e

↵x (SN(x) cos !x + TN(x) sin !x).

As for the previous rule, Pn(x) and Qm(x) are given polynomials of degree n and
m respectively. Then SN(x) and TN(x) are polynomials of degree N , where N is the
maximum of n and m. This rule encompasses all the previous rules as special cases.

All of these rules are very sensible, once we realize that taking derivative of our guesses
results in expressions that have similar terms. However: this does not always work!
What could go wrong?

Example: Consider the di↵erential equation y

00 + 3y0 � 4y = e

�4x. Based on the expo-
nential rule, we’d guess

yP = Ae

�4x

) y

0
P = �4Ae

�4x

) y

00
P = 16Ae

�4x
.

Substitution results in

16Ae

�4x � 12Ae

�4x � 4Ae

�4x = e

�4x ) 0 = e

�4x!

Not a satisfactory conclusion, to say the least! What went wrong? Remember that
our homogeneous solution is yH = c1e

x + c2e
�4x. This says that any multiple of e

�4x is
a solution of the homogeneous equation. Thus, if we’re going to plug in yP = Ae

�4x, we
know everything will cancel, and there’s no way we’ll get an equation that will determine
A. How do we fix this?

It turns out there’s an easy fix: whenever any term occuring in our guess for the
particular solution also appears in the homogeneous solution, we multiply our entire
guess by x.

Example: Let’s see how this works for our previous example. Multiplying our entire
guess by x gives

yP = Axe

�4x

) y

0
P = �4Axe

�4x + Ae

�4x

) y

00
P = 16Ae

�4x � 8Ae

�4x
.

Now we substitute these (somewhat more complicated) expressions into our di↵erential
equation. This gives

16Ae

�4x � 8Ae

�4x � 12Axe

�4x + 3Ae

�4x � 4Axe

�4x = e

�4x

) �8Ae

�4x + 3Ae

�4x = e

�4x

) �5A = 1

) A = �1

5
,
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so that the particular solution is

yP = �1

5
xe

�4x
,

and the general solution is

y = c1e
x + c2e

�4x � 1

5
xe

�4x
.

So, in general, we use our seven rules to give an initial guess for the form of yP . Next,
if any term in this guess appears in the homogeneous solution, we multiply the entire
guess by x. Now, we check if any of the new terms still appear in the homogeneous
solution. If so, we multiply by x again, and so on.

Example: Consider the equation y

00+y = cos x. You’ll easily check the the homogeneous
solution is

yH = c1 cos x + c2 sin x.

Based on the form of g(x), we’d guess yP = A cos x + B sin x. But both terms are in the
homogeneous solution, thus we modify our guess to

yP = x (A cos x + B sin x) ,

which you should check will work.

Example: Consider y

00�2y0+y = e

x(x2 +1). You’ll find that the homogeneous solution
is

yH = c1e
x + c2xe

x
.

Based on the form of g(x), we’ll guess yP = (Ax

2 + Bx + C)ex. But the second (Bxe

x)
and third (Ce

x) terms appear in the homogeneous solution, thus we multiply our guess
by x: yP = x(Ax

2 + Bx + C)ex = (Ax

3 + Bx

2 + Cx)ex. But now the new third term
(Cxe

x) still appears in yH , thus we multiply by x again, so that

yP = x(Ax

3 + Bx

2 + Cx)ex = (Ax

4 + Bx

3 + Cx

2)ex
,

which works (check!).

If g(x) = g1(x) + g2(x), where we have rules that tell us what particular solution to
guess for g1(x) and g2(x), we can simply separate g(x) in these two parts, solve the two
simpler problems, and add up the two particular solutions:

Theorem 6 If g(x) = g1(x) + g2(x), then a particular solution for L[y] = g(x) is given

by yP = yP1 + yP2, where yP1 and yP2 are particular solutions corresponding to g1(x) and

g2(x), respectivelly.

Proof:

L[yP ] = L[yP1 + yP2] = L[yP1] + L[yP2] = g1(x) + g2(x) = g(x),

which is what we had to prove.

In the next lecture, we’ll discuss a method that works for all possible g(x)’s. However,
when the methods of this lecture work, they’re simpler than the method we’ll see in the
next lecture.
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Lecture 13. Nonhomogeneous equations: variation of
parameters

In the last lecture, we saw how to solve the equation

ay

00 + by

0 + cy = g(x),

in the case when g(x) is a polynomial combination of exponentials, sines, cosines, and
polynomials. Although these cases are very important for applications, we’d still like to
know what to do when g(x) is not of this form. In this lecture, we’ll see a general method
to answer this question. We’ll do even better: the method we’ll use gives us a particular
solution to any equation of the form

y

00 + p(x)y0 + q(x)y = g(x),

even when p(x) and q(x) are not constant. To do this, we’ll need two linearly independent
solutions y1 and y2 of the homogeneous problem

y

00 + p(x)y0 + q(x)y = 0.

We know that to find the general solution, all we need is the solution of this homogeneous
problem, and one particular solution yp. Then the general solution is given by

y = c1y1 + c2y2 + yP .

Since we’ve already seen how to get y2 if we know y1 (using Abel’s formula, reduction
of order), this in e↵ect means that after today’s lecture we’ll be able to solve any lin-
ear second-order equation, as long as we manage to somehow find one solution of the
homogeneous problem.

Variation of parameters

This is a general method to construct one yP , given y1 and y2. It works for any g(x).
You should realize that when the method of undetermined coe�cients can be used, it is
a lot easier.

The general solution to the homogeneous problem is

y = c1y1 + c2y2,

where c1 and c2 are constants. We know that if we plug this in to the whole equation
(with g(x)), then the left-hand side vanishes. That’s not quite what we want, but it’s
not altogether terrible: we do want a lot of things to cancel. What would happen if c1

and c2 were not constant, but were allowed to depend on x? This is the premice of the
method of variation of parameters: maybe we can fabricate a new solution out of
an old solution to a related problem, by letting whatever parameters are present in that
solution vary. Here those parameters are c1 and c2. So, let’s try to construct a particular
solution

yP = u1(x)y1(x) + u2(x)y2(x).

62



So, we’re assuming that yP has a form similar to the homogeneous solution, but a little
more complicated. One thing to note before we proceed: we’re trying to find one partic-
ular solution, and we’ve introduced two new unknown functions u1 and u2. This means
that we still get to introduce one constraint between these two functions. We’ll do this
when it’ll be convenient, see below.

Let’s substitute our form of the particular solution into the equation. To that end,
we need y

0
P and y

00
P . So, let’s take a derivative:

y

0
P = u1y

0
1 + u2y

0
2 + u

0
1y1 + u

0
2y2.

Our original equation for y

0
P is of second order. If we’ll take another derivative of y

0
P ,

we’ll see that y

00
P depends on u

00
1 and u

00
2. Thus, the di↵erential equation we’ll have to solve

for u1 and u2 will also be of second order. That’s not any simpler than the problem we
started with. This is where we’ll impose another condition on u1 and u2. We impose that

u

0
1y1 + u

0
2y2 = 0.

Then
y

0
P = u1y

0
1 + u2y

0
2,

and y

00
P will not depend on second derivatives of u1 or u2:

y

00
P = u1y

00
1 + u2y

00
2 + u

0
1y
0
1 + u

0
2y
0
2.

Now we plug everything into our di↵erential equation:

y

00
P + py

0
P + qyP = g

) u1y
00
1 + u2y

00
2 + u

0
1y
0
1 + u

0
2y
0
2 + p (u1y

0
1 + u2y

0
2) + q (u1y1 + u2y2) = g

) u1(y
00
1 + py

0
1 + qy1) + u2(y

00
2 + py

0
2 + qy2) + u

0
1y
0
1 + u

0
2y
0
2 = g,

but y1 and y2 are solution of
y

00 + py

0 + qy = 0,

so that
u

0
1y
0
1 + u

0
2y
0
2 = g.

Thus the two equations we have to solve for u1 and u2 are
⇢

u

0
1y1 + u

0
2y2 = 0

u

0
1y
0
1 + u

0
2y
0
2 = g

.

We’ll solve these two linear algebraic equations for u

0
1 and u

0
2, then we’ll integrate to get

u1 and u2.

First, let’s multiply the first equation by y

0
1 and the second equation by y1. Subtracting

the two resulting equations from each other, the terms with u

0
1 drop out and we get

u

0
2(y1y

0
2 � y2y

0
1) = gy1

) u

0
2W (y1, y2) = gy1

) u

0
2 =

gy1

W (y1, y2)

) u2 =

Z
gy1

W (y1, y2)
dx.
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Note that y1 and y2 are by definition linearly independent, so that W (y1, y2) 6= 0.

Second, let’s multiply the first equation by y

0
2 and the second equation by y2. Sub-

tracting the two resulting equations from each other (sounds familiar?), the terms with
u

0
2 drop out and we get

u1 = �
Z

gy2

W (y1, y2)
dx,

proceeding in an identical way to before. In both of these integrals, we don’t care about
the constants of integration since we just want to find one particular solution. As we’ve
seen before, finding a di↵erent particular solution merely results in di↵erent constants c1

and c2 in the form of the general solution. Using yP = u1y1 + u2y2, we get

yP = �y1

Z
y2g

W (y1, y2)
dx + y2

Z
y1g

W (y1, y2)
dx.

This is the most general form of the particular solution, for any given g(x).

Example: Consider the equation

y

00 � 5y0 + 6y = 2ex
.

Here g(x) = 2ex. Notice that this is an example where we could use either the method
of undetermined coe�cients or our new method of variation of parameters. No matter
which method we use, we first have to solve the homogeneous problem.

Homogeneous solution: the characteristic equation is

�

2 � 5� + 6 = 0,

from which �1 = 3 and �2 = 2. Thus

y1 = e

3x
, y2 = e

2x
,

and
yH = c1e

3x + c2e
2x

.

Particular solution, using variation of parameters: first we compute the Wron-
skian:

W (y1, y2) = y1y
0
2 � y

0
1y2 = e

3x2e2x � 3e3x
e

2x = �e

5x
.

Then

yp = �y1

Z
y2g

W (y1, y2)
dx + y2

Z
y1g

W (y1, y2)
dx

= �e

3x

Z
e

2x2ex

�e

5x
dx + e

2x

Z
e

3x2ex

�e

5x
dx

= 2e3x

Z
e

�2x
dx� 2e2x

Z
e

�x
dx

= 2e3x e

�2x

�2
� 2e2x e

�x

�1
= �e

x + 2ex

= e

x
.
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Particular solution, using undetermined coe�cients: Given g(x) = 2ex, we
guess

yP = Ae

x
.

This guess is not contained in the homogeneous solution, so we don’t need to modify it.
Thus

y

0
P = Ae

x and y

00
P = Ae

x
.

Substituting these in gives

Ae

x � 5Ae

x + 6Ae

x = 2ex

) 2Ae

x = 2ex

) A = 1

) yP = e

x
.

Note that this is significantly faster than using variation of parameters.
General solution: the general solution is

y = c1e
3x + c2e

2x + e

x
.

Example: Next, consider the equation

y

00 + 9y = 9 sec2 3x.

This example can’t be done using the method of undetermined coe�cients so variation
of parameters is our only option.

Homogeneous solution: the characteristic equation is

�

2 + 9 = 0 ) �1,2 = ±3i,

and

y1 = cos 3x, y2 = sin 3x.

The homogeneous solution is

yH = c1 cos 3x + c2 sin 3x.

Particular solution, using variation of parameters: first we compute the Wron-
skian:

W (y1, y2) = y1y
0
2 � y

0
1y2 = (cos 3x)(3 cos 3x)� (�3 sin 3x)(sin 3x) = 3.
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Then (using u = 3x and v = cos u)

yp = �y1

Z
y2g

W (y1, y2)
dx + y2

Z
y1g

W (y1, y2)
dx

= � cos 3x

Z
9 sec2 3x

3
sin 3xdx + sin 3x

Z
9 sec2 3x

3
cos 3xdx

� cos 3x

Z
sec2

u sin udu + sin 3x

Z
sec2

u cos udu

� cos 3x

Z �1

v

2
dv + sin 3x

Z
sec udu

= � cos 3x
1

v

+ sin 3x ln | sec u + tan u|

� cos 3x
1

cos u

+ sin 3x ln | sec u + tan u|

� cos 3x
1

cos 3x
+ sin 3x ln | sec 3x + tan 3x|

= �1 + sin 3x ln | sec 3x + tan 3x|.

General solution: the general solution is given by

y = c1 cos 3x + c2 sin 3x� 1 + sin 3x ln | sec 3x + tan 3x|.

As a final note, we should be careful when we start the method of variation of param-
eters: the form of the equation for which our solution formula is valid requires that the
coe�cient of y

00 is one. Thus, if there is any other coe�cient there originally, we have to
divide the equation by it, so we can read of the correct form of g(x).
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Lecture 14. Mechanical vibrations

Problem set-up

As an application to second-order linear equations with constant coe�cients, we go back
to Newton’s law:

F = ma.

Here F is the sum of the forces acting on the point particle of mass m, and a denotes
the particle’s acceleration. We’ll consider the case of a particle suspended from a linear
spring with spring constant k. The top of the spring could be moving in a prescribed
way, and the particle is undergoing damping. You can think of damping as a consequence
of dealing with a realistic spring (small damping) or maybe the whole process is taking
place in a viscous bath. All of this is illustrated in Fig. 10.

x(t)

k

F

m

v(t)

e

γ
Figure 10: The set-up of our spring system.

So, what’s our governing equation? We need to determine the explicit form of the
total force. We have

F = Fspring + Fdamper + Fexternal.
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What are the functional forms of these di↵erent forces. The last one is given to us as

Fexternal = Fe(t),

some function of t. The other two are not much harder. The damping force is

Fdamper = ��v,

where v is the velocity of the particle, and � is a constant damping rate. Note that this
force has a negative sign: it opposes the motion. The last force is given by Hooke’s law:

Fspring = �kx.

This force also comes with a minus sign. It is a restoring force: it pulls the particle back
to its equilibrium position.

Putting all these together, we finally obtain

mx

00 + �x

0 + kx = Fe(t).

Here we’ve used that a = x

00, v = x

0: the acceleration and the velocity are the second,
respectively first, time derivative of the position.

Unforced oscillations

If Fe(t) 6= 0 then the above di↵erential equation is nonhomogeneous. As we’ve seen:
whenever we’re facing a nonhomogeneous problem, we should solve the homogeneous
problem first. We’ll get back to the nonhomogeneous problem when we talk about forced
oscillations in the next lecture. Here we consider

mx

00 + �x

0 + kx = 0.

We refer to the motions predicted by this di↵erential equation as free motions. Further,
if � = 0, the motion is undamped. Otherwise, if � > 0, then the motion is damped.

We start by considering the characteristic equation:

m�

2 + �� + k = 0 ) �1,2 =
�� ±

p
�

2 � 4mk

2m
.

Note that all of m, �, and k are not allowed to be negative.

There are three possible cases:

1. �

2
> 4mk: lots of damping. This is known as an overdamped spring.

2. �

2 = 4mk: still a lot of damping, but less than overdamped. We call this a critically

damped spring.

3. �

2
< 4mk: a small amount of damping. This is known as the underdamped spring.

We’ll spend most of our time studying the underdamped case. Note that the un-
damped spring is a special case of the underdamped spring.
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Underdamped oscillations

If �

2
< 4mk then 4mk � c

2
> 0, so that

�1,2 =
�� ± i

p
4mk � �

2

2m
= � �

2m
± i!,

where

! =
4mk � �

2

2m
.

The general solution is given by

x = c1e
��t/2m cos !t + c2e

��t/2m sin !t

= e

��t/2m(c1 cos !t + c2 sin !t).

Let’s look at this solution in two di↵erent cases.

1. The undamped spring: � = 0. In this case the exponential dissapears and

x = c1 cos !0t + c2 sin !0t,

with

!0 =

p
4mk

2m
=

p
mk

m

=

r
k

m

.

The parameter !0 is called the natural frequency of the system: it is the frequency
the spring-particle system likes to oscillate at when no other forces (external, damp-
ing) are present. In order to completely determine the solution, we need initial con-
ditions to specify the constants c1 and c2. Often it is useful to rewrite the solution
formula in so-called amplitude-phase form. Let

⇢
c1 = A cos '

c2 = A sin '

.

Then

A =
q

c

2
1 + c

2
2, tan ' =

c2

c1
.

We have

x = A cos ' cos !0t + A sin ' sin !0t

= A cos(!0t� ').

The new parameters A and ' are called the amplitude and the phase respectively,
of the solution. We see that the solution is periodic with period

T =
2⇡

!0
.

A plot of an undamped solution is shown in Fig. 11.
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x(t)

t

A=3

Figure 11: A solution of an undamped system: x = 3 cos(2t� 3).

2. The underdamped spring: � > 0.

In the underdamped case with � > 0 we have

x = e

��t/2m(c1 cos !t + c2 sin !t)

= Ae

��t/2m cos(!t� ').

We see that the factor Ae

��t/2m plays the role of a time-dependent amplitude. If
the damping rate � is small, then this amplitude factor will decay to zero, but at a
slow rate. In this case the period of the solution is

T =
2⇡

!

.

An underdamped solution is illustrated in Fig. 12.
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Figure 12: A solution of an underdamped system: x = 3e�t/4 cos(2t� 3).
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Lecture 15. Forced mechanical vibrations

Let’s go back to the set-up at the beginning of the previous lecture. In this lecture we
will include an external forcing term

Fe(t) = F0 cos !t.

Here F0 and ⌦ are constants. This forcing represents a periodic moving up and down of
the base of the spring system with constant amplitude F0 and frequency ⌦. Thus the
di↵erential equation we’re looking at is

mx

00 + �x

0 + kx = F0 cos ⌦t.

This is a nonhomogeneous problem. That means we have to consider the homogeneous
problem first. Fortunately, we’ve already done this in the previous lecture, so we get to
use it here. As before, we’ll break this up in di↵erent cases.

Remark: this same di↵erential equation matters in a variety of di↵erent settings:
mechanical systems such as springs, as discussed here; electrical systems with resistors,
capacitors and solenoids, see below. In short, this di↵erential equation is important to
study in any setting where we encounter vibrations or oscillations.

1. No damping (� = 0), no resonance (⌦ 6= !

0

)

The di↵erential equation is

mx

00 + kx = F0 cos ⌦t

) x

00 + !

2
0x =

F0

m

cos ⌦t,

where !

2
0 = k/m is the square of the natural frequency of the system.

(a) The homogeneous solution of this problem (see last lecture) is

xH = c1 cos !0t + c2 sin !0t,

and the frequency of these oscillations is !0.

(b) The particular solution can be found using the method of undetermined coe�-
cients. We guess

xp = A cos ⌦t + B sin ⌦t.

This guess looks like a good one, but we need to be careful: if ⌦ = !0, then the
terms of the particular solution also appear in the homogeneous solution. In that
case we need to multiply our guess by t and try again. We’ll deal with this case
separately later. So, for now: assume that ⌦ 6= !0. In that case we substitute the
above guess in the equation. With

x

00
p = �A⌦2 cos ⌦t�B⌦2 sin ⌦t,
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we get

�A⌦2 cos ⌦t�B⌦2 sin ⌦t + !

2
0(A cos ⌦t + B sin ⌦t) =

F0

m

cos ⌦t

)
⇢
�A⌦2 + !

2
0A = F0/m

�B⌦2 + !

2
0B = 0

)

8
<

:
A =

F0

m(!2
0 � ⌦2)

B = 0.

We see immediately that there are problems with the solution if we were to allow
⌦ = !0. Good thing we excluded this! The particular solution is

xp =
F0

m(!2
0 � ⌦2)

cos ⌦t.

(c) The general solution is given by

x = xH + xp = c1 cos !0t + c2 sin !0t +
F0

m(!2
0 � ⌦2)

cos ⌦t.

At this point, c1 and c2 may be determined from the initial conditions.

Let’s impose some special initial conditions. These aren’t really essential, but they
make the calculations a bit easier. Let

x(0) = 0, x0(0) = 0.

You’ll easily check that the corresponding solution is given by

x =
F0

m(!2
0 � ⌦2)

(cos ⌦t� cos !0t).

(You checked this, right? Otherwise go back and do it NOW!) Using a trig identity (check
this too!) this solution is rewritten as

x =
2F0

m(!2
0 � ⌦2)

sin !1t sin !2t,

where

!1 =
!0 � ⌦

2
, !2 =

!0 + ⌦

2
.

Assume that ⌦ is close to !0 (but not equal, otherwise the above result is not valid,
remember?) then !1 is close to zero, which means that the factor sin !1t is a function
with a frequency that is much smaller than that of sin !2t. We can trivially rewrite our
solution as

x =

✓
2F0

m(!2
0 � ⌦2)

sin !1t

◆
sin !2t = U(t) sin !2t,
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where

U(t) =
2F0

m(!2
0 � ⌦2)

sin !1t

is interpreted as a time-dependent amplitude: it is a function that is changing much
slower than sin !2t. This time-dependent amplitude is itself oscillating in time, but it
takes a lot longer for it to come around. The kind of pattern we get is illustrated in
Fig. 13.

Figure 13: The beats phenomenon with ⌦ = 10, !0 = 9.

Such a signal is called a modulated wave, and the phenomenon observed is that of
beats: there are two frequencies in this problem. The first frequency is the slow one,
which governs the modulation of the amplitude. The second frequency is that of the
underlying carrier wave, i.e., the fast oscillations.

2. No damping (� = 0), resonance (⌦ = !

0

)

Let’s look at one of the special cases we skipped. The solution given above is not valid
when ⌦ = !0. What happens in this case?

The di↵erential equation is

mx

00 + kx = F0 cos !0t

) x

00 + !

2
0x =

F0

m

cos !0t.

(a) The homogeneous solution of this problem is the same as before:

xH = c1 cos !0t + c2 sin !0t.

(b) The particular solution can be found using the method of undetermined coe�-
cients. We guess

xp = A cos !0t + B sin !0t.
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This guess is no longer valid, since both terms of our guess occur in the homogeneous
solution. This implies we need to multiply our guess by t and try again. We get

xp = At cos !0t + Bt sin !0t,

) x

0
p = A cos !0t + B sin !0t� A!0t sin !0t + B!0t cos !0t,

) x

00
p = �2A!0 sin !0t + 2B!0 cos !0t� A!

2
0t cos !0t�B!

2
0t sin !0t.

Substituting this in the equation, we obtain

�2A!0 sin !0t + 2B!0 cos !0t� A!

2
0t cos !0t�B!

2
0t sin !0t+

!

2
0 (At cos !0t + Bt sin !0t) =

F0

m

cos !0t

) �2A!0 sin !0t + 2B!0 cos !0t =
F0

m

cos !0t

)
( �2A!0 = 0

2B!0 =
F0

m

)

8
<

:

A = 0

B =
F0

2m!0
.

The particular solution is

xp =
F0

2m!0
t sin !0t.

(c) The general solution is given by

x = xH + xp = c1 cos !0t + c2 sin !0t +
F0

2m!0
t sin !0t.

At this point, c1 and c2 may be determined from the initial conditions.

Let’s think about this solution. After a significant time, the particular solution will
give us the most important part, as it’s linearly increasing in time, whereas the homo-
geneous solution is just oscillating from here to oblivion. So, what does this particular
solution look like? It’s plotted in Fig. 14. You observe that the amplitude of the solution
is linearly growing in time. This phenomenon is called resonance. It occurs whenever we
force a system at its natural frequency. Resonance is one of the important elementary
processes in all kinds of physical systems. You may imagine that this is not necessarily
a good thing in applications: if we force the spring to oscillate at higher and higher am-
plitudes, it may eventually break! This gives us another way to think about the natural
frequency of the system: it is the frequency that if we use it to force the system results
in the system oscillating more and more wildly, eventually leading to breakdown, unless
we have a way to prevent it. Preventing it is the subject of the next case.
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Figure 14: The phenomenon of resonance with !0 = 1.

3. Damping (� 6= 0)

Let’s look at what happens when we include the e↵ects of damping. In any realistic
system some amount of damping will be present. Sometimes, its e↵ects are so minuscule
they may be ignored. In other cases, they may dominate.

The di↵erential equation is

mx

00 + �x

0 + kx = F0 cos !0t.

(a) We’ve seen how to find the homogeneous solution of this problem in the previous
lecture: assuming that we’re dealing with subcritical damping we have

xH = e

��t/2m (c1 cos !t + c2 sin !0t) ,

where ! =
p

4km� �

2
/2m. Note that by assuming subcritical damping we’ve let

�

2
< 4km. As we’ve seen this corresponds to a damped oscillation. Thus, no matter

what the particular solution is, or what the initial conditions are, we have

lim
t!1

xH = 0.

This implies that, if we wait su�ciently long, all the important information about
the general solution is contained in the particular solution! So, what are we waiting
for? Let’s find it!

(b) The particular solution can be found using the method of undetermined coe�-
cients, as before. We guess

xp = A cos ⌦t + B sin ⌦t.

After substituting this guess in the equation and equating the coe�cients of sine
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and cosine, and doing some algebra, we get (check this!):

8
>>>><

>>>>:

A =
F0
m

(!2
0 � ⌦2)

(!2
0 � ⌦2)2 + �

2
0⌦

2
,

B =
F0
m

�⌦

(!2
0 � ⌦2)2 + �

2
0⌦

2
,

where �0 = �/m. We see that the particular solution is always bounded as t!1.
Even if we were to have ⌦ = !0, or ⌦ = !, the particular solution we’ve constructed
works just fine. Thus there’s never a danger of the amplitude of the particular
solution exploding on us, as there was in the resonant case without damping.

(c) The general solution is given by

x = xH + xp = e

��t/2m (c1 cos !t + c2 sin !0t) + A cos ⌦t + B sin ⌦t,

where A and B are given by the expressions above. At this point, c1 and c2 may
be determined from the initial conditions.

Let’s think about this solution. After a significant time, the particular solution will
give us the only important part, as it’s not decaying in time, whereas the homogeneous
solution is. On the other hand, the particular solution is just an oscillation. What can
we say about it? One of the most important aspects of an oscillation is its amplitude.
For the particular solution here, that amplitude is given by (do I need to say it: Check
it!)

p
A

2 + B

2 =
F0/mp

�

2
0⌦

2 + (!2
0 � ⌦2)2

.

It is clear from this formula that the magnitude of the response of the system depends a
lot on the parameters of the input forcing. To quantify that, we rewrite the above as

m

F0

p
A

2 + B

2
!

2
0 =

1
q

�2
0

!2
0

⌦2

!2
0

+
⇣
1� ⌦2

!2
0

⌘2 .

This expression is used to plot the amplitude response graph, shown in Fig. 15. This figure
shows the scaled (by a factor m/F0) amplitude of the response, as a result of forcing the
system with frequency ⌦ (in units of !0), for di↵erent values of the normalized damping
�0/!0. We see that for no damping, there is a vertical asymptote at ⌦/!0 = 1, as expected.
For non-zero damping, there is still a maximum in the amplitude near ⌦/!0 = 1. Thus,
if we want to get a lot from a little (and who doesn’t?), we should force the system with
a frequency that is close to its natural frequency, as this will maximize the amplitude of
the output response.

Microwaves work on this principle: the microwave operates in the microwave regime
(gee, coincidence?), which is close to the natural frequency for water molecules. Water is
the main ingredient in any food. As a result of the microwave forcing, the water molecules
vibrate a lot, giving o↵ a lot of heat due to friction. It is this heat that warms your food.
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Figure 15: The amplitude-response graph for various values of �0/!0.

Lecture 16. Systems and linear algebra I: introduc-
tion

Systems of equations

Let’s take another look at the second-order equation

y

00 + p(x)y0 + q(x)y = g(x).

We can rewrite this as a few first-order equations. Let
⇢

y1 = y,

y2 = y

0
,

then 8
<

:

y

0
1 = y

0 = y2,

y

0
2 = y

00 = �p(x)y0 � q(x)y + g(x),
= �p(x)y2 � q(x)y1 + g(x),

or ⇢
y

0
1 = y2,

y

0
2 = �p(x)y2 � q(x)y1 + g(x).
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This is a system of first-order equations. The word system refers to the fact that there’s
more than one equation we have to solve. The above system has dimension two, which
means that there’s two equations to solve, and two functions (y1 and y2) to solve for.
We can have systems of any number of dimensions, as we’ll see in what follows. Further,
similarly to what we did above, every di↵erential equation of any order can be rewritten
as a system of first-order di↵erential equations. Even better, every system of equations
of arbitrary order can be rewritten as a system of first-order equations. Let’s do an-
other example. Such systems of higher-order equations often arise in their own right in
applications. Just think of Newton’s law applied to a multiparticle situation.

Example: Consider the third-order equation

y

000 + 2y0 + 5y = 7.

Since this equation is of third order, we introduce three variables:
8
<

:

y1 = y,

y2 = y

0
,

y3 = y

00
,

Then 8
<

:

y

0
1 = y

0 = y2,

y

0
2 = y

00 = y3,

y

0
3 = y

000 = �2y0 � 5y + 7 = �2y2 � 5y1 + 7.

Thus our corresponding first-order system is
8
<

:

y

0
1 = y2,

y

0
2 = y3,

y

0
3 = �2y2 � 5y1 + 7.

Let’s do an example with a higher-order system.

Example: Consider the system
⇢

y

000 + y = y

0 � y

2
,

u

00 + u = y.

Here we have a system of two equations: one is of third order, the other one is of second
order. How do we write this as a system of first-order equations? We’ll need five variables:

8
>>>><

>>>>:

y1 = y,

y2 = y

0
,

y3 = y

00
,

u1 = u,

u2 = u

0
.

Then 8
>>>><

>>>>:

y

0
1 = y

0 = y2,

y

0
2 = y

00 = y3,

y

0
3 = y

000 = �y + u

0 � y

2 = �y1 + u2 � y

2
1,

u

0
1 = u

0 = u2,

u

0
2 = u

00 = �u + y = �u1 + y1.
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Thus our first order system is
8
>>>><

>>>>:

y

0
1 = y2,

y

0
2 = y3,

y

0
3 = y1 + u2 � y

2
1,

u

0
1 = u2,

u

0
2 = �u1 + y1.

Note that this system is nonlinear (because of the y

2
1 term). This is to be expected, since

the originating system is also nonlinear. This is a fifth-order system.

Now we consider the most general first-order system that is linear. This has to be of
the form 8

>>>>><

>>>>>:

y

0
1 = a11y1 + a12y2 + · · · + a1nyn + b1,

y

0
2 = a21y1 + a22y2 + · · · + a2nyn + b2,

y

0
3 = a31y1 + a32y2 + · · · + a3nyn + b3,

...
y

0
n = an1y1 + an2y2 + · · · + annyn + bn.

Here the coe�cients a11, a12 etc are allowed to be functions of our independent variable
(call it t). So are the functions b1, . . . , bn. This is an n-th order system. The unknown
functions are y1, . . . , yn. Let’s collect these in a list that we’ll call y, which we’ll write
vertically as

y =

0

BBB@

y1

y2
...

yn

1

CCCA
.

We call a vertical list like this an n-dimensional column vector. If we had written the list
horizontally, it’d be an n-dimensional row vector. We can group the functions b1, . . . , bn

in a similar vector:

b =

0

BBB@

b1

b2
...
bn

1

CCCA
.

Organizing the coe�cient functions a11, a12, . . . is a bit more complicated: we have to
keep track of which ones belong to the first equation, to the second equation and so on.
Further, we have to see which coe�cients belong to which unknown function. So we
won’t just put all the a11, a12, . . . in a long list. Rather, we put them in a rectangular
table: all the ones from the first equation go in the first row. The ones from the second
equation in the second row, and so on. Similarly, the ones multiplying y1 we’ll put in the
first column, the ones multiplying y2 in the second column, and so on. We denote the
whole table by A. Thus

A =

0

BBBBB@

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
an1 an2 an3 · · · ann

1

CCCCCA
.
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Such a rectangular table of entries is referred to as a matrix. The above matrix has n rows
and n columns. Therefore it’s called a matrix of size n ⇥ n. Since the number or rows
equals the number of columns, we call A a square matrix. We’ll see nonsquare matrices
later as well. Actually, you’ve already seen them: both y and b are examples of matrices
of size n⇥ 1. Thus column (and row) vectors are a special type of matrix.

Introducing all of this notation allows us to rewrite the system in shorthand as

y

0 = Ax + b.

Now, you have to admit: even if that’s all it’s good for, that’s pretty good. That’s a lot
less writing for sure. The beauty of the whole thing is that this is not all it’s good for:
it’s good for far more! That’s the topic of linear algebra. Linear algebra is very useful,
also in studying di↵erential equations. In the remainder of this lecture, and in the next
few lectures, we’ll go over the essentials of linear algebra that we need in the rest of this
course.

A matrix is a rectangular array of entries, arranged in row and columns. Matrices are
the fundamental objects in linear algebra. Let’s figure out how we work with them.

We can multiply matrices with vectors: from the above definitions, you already know
how to do this:

0

BBB@

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

1

CCCA

0

BBB@

y1

y2
...

yn

1

CCCA
=

0

BBB@

a11y1 + a12y2 + · · · + a1nyn

a21y1 + a22y2 + · · · + a2nyn
...

an1y1 + an2y2 + · · · + annyn

1

CCCA
.

Thus, the result of multiplying a matrix of size n⇥ n with a column vector of size n is a
new column vector of size n. For this multiplication to work, the number of columns of
the matrix needs to be equal to the size of the column vector. Before we say more about
multiplication, let’s say more about even more elementary properties of matrices.

Elementary properties of matrices

Let’s use the following matrices in our examples:

A =

0

@
1 2 3
4 5 6
7 8 9

1

A
, B =

✓
1 2 3
7 5 �2

◆
, C =

0

@
1
2
3

1

A
.

Note that A is a square matrix of size 3⇥3, B is a nonsquare matrix of size 2⇥3, whereas
C is a column vector of size 3. Alternatively, C is a nonsquare matrix of size 3⇥ 1.

• Rows: the first row of A is ( 1 2 3 ). The second row of B is ( 7 5 �2 ). The
last row of C is ( 3 ).

• Columns: The third column of A is
0

@
3
6
9

1

A
,
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and the second column of B is ✓
2
5

◆
.

• Transpose: The transpose of a matrix is the same matrix, but with the rows and
columns switched: what used to be the first row in now the first columns, etc. The
transpose of a matrix is denoted with a super-index T :

A

T =

0

@
1 4 7
2 5 8
3 6 9

1

A
.

Similary,

C

T =

0

@
1
2
3

1

A
T

=
�

1 2 3
�
, B

T =

✓
1 2 3
7 5 �2

◆T

=

0

@
1 7
2 5
3 �2

1

A
.

• Equality: two matrices are equal if all their entries are equal. Note that this can
only happen if the matrices are the same size, i.e., the two matrices have the same
number of rows, and the same number of columns.

• Addition, subtraction: We can only add or subtract matrices of equal dimen-
sions. Then A ± B is the matrix with as entries

(A ± B)ij = (A)ij ± (B)ij.

In other words, addition and subtraction are done entry by entry. As an example:
✓

2 3 5
7 1 0

◆
+

✓
�1 2 1

0 4 0

◆
=

✓
1 5 6
7 5 0

◆
.

You can easily check that, as a consequence of our definition, the following properties
hold:

A + (B + C) = (A + B) + C (Associativity),

A + B = B + A (Commutativity).

Multiplication of matrices

For starters, we can only multiply the matrices A and B is the number of columns of
A equals the number of rows of B. If so, then the resulting matrix AB has the same
number of rows as A and the same number of columns as B:

A

n⇥m

B

m⇥ k

= AB

n⇥ k

.

Thus the result of multiplying a matrix of size n⇥m with one of size m⇥ k is a matrix
of size n⇥ k. It’s entry at position ij is given by

(AB)ij =
mX

r=1

AirBrj

= (row i of A) · (column j of B)

= scalar product of the the i-th row of A with the j-th row of B.
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You may have seen the scalar product before. If not, or else as a reminder, the scalar
product of two m-dimensional vectors v

(1) and v

(2) is

v

(1) · v(2) = v

(1)
1 v

(2)
1 + v

(1)
2 v

(2)
2 + · · · + v

(1)
m v

(2)
m .

Let’s do a few examples.

Example: Let
A = ( 1 3 5 ),

and

B =

✓
0
2

◆
.

We cannot compute AB, since the A is of dimension 1 ⇥ 3 and B has dimension 2 ⇥ 1.
Note that we could compute BA though. Why don’t you do it as an exercise?

Example: Let
A =

�
1 3 5

�
,

and

B =

0

@
0
2
7

1

A
.

These two matrices can be multiplied: we know that AB will be a 1⇥ 1 matrix. We get

AB = 1⇥ 1 matrix

= (first row of A · first column of B)

= (1 ⇤ 0 + 3 ⇤ 2 + 5 ⇤ 7)

= (0 + 6 + 35)

= (41).

The result is the 1⇥ 1 matrix with as sole entry 41.

Example: Now, a little bit harder. Let

A =

✓
1 2
3 4

◆
, A =

✓
1 2
3 4

◆
.

In this case we can compute either AB or BA. Either one will be a 2⇥ 2 matrix again.
Let’s do both.

AB =

✓
row 1 of A · column 1 of B row 1 of A · column 2 of B

row 2 of A · column 1 of B row 2 of A · column 2 of B

◆

=

✓
�2 + 4 1 + 0
�6 + 8 3 + 0

◆

=

✓
2 1
2 3

◆
.
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On the other hand,

BA =

✓
row 1 of B · column 1 of A row 1 of B · column 2 of A

row 2 of B · column 1 of A row 2 of B · column 2 of A

◆

=

✓
�2 + 3 �4 + 4
2 + 0 4 + 0

◆

=

✓
1 0
2 4

◆
.

Note that these are not equal! This may come as a suprise. The matrix multiplication
of A with B is usually not equal to that of B with A. For one, it is possible for AB and
BA to have di↵erent dimensions! Heck: one of them may be defined whereas the other
one is not. Even if both are defined, the numbers typically (but not always) come out to
be di↵erent! Hmmm. Perhaps you don’t like this. Oh well. You’ll live.

Example: We won’t be stopped: let’s do a 3⇥ 3 example: let

A =

0

@
1 2 3
0 4 5
0 0 6

1

A
, A =

0

@
1 0 0
1 2 0
1 2 3

1

A
.

Then

AB =

0

@
1 + 2 + 3 0 + 4 + 6 0 + 0 + 9
0 + 4 + 5 0 + 8 + 10 0 + 0 + 15
0 + 0 + 6 0 + 0 + 12 0 + 0 + 18

1

A

=

0

@
6 10 9
9 18 15
6 12 18

1

A
.

Are we getting the hang of this?

Example: Let

A =

✓
1
2

◆
, B =

�
3 4

�
.

Then AB is a 2⇥ 2 matrix:

AB =

✓
3 4
6 8

◆
.

You can easily check that, as a consequence of our definition, the following properties
hold:

A(BC) = (AB)C (Associativity),

(A + B)C = AC + BC (Distributivity).

On the other hand, as we’ve just discussed in the examples:

AB 6= BA,
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except in rare cases.

Lastly, we need to define a special matrix which will be convenient later:

In =

0

BBB@

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

1

CCCA
.

This matrix has zeros everywhere, except on the diagonal, where it has 1’s. Often we omit
the index n, which denotes the size of this matrix, which is called the identity matrix.
The reason it is called this is that

AI = A = IA.

Thus, multiplication with the identity matrix has no e↵ect.
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Lecture 17. Systems and linear algebra II: RREF

We’ve learnt a lot about matrices. What can we do with them? In this lecture, we’ll see
how to use matrices to solve linear algebraic equations. To this end, we introduce the
following operations:

• Mk(↵): this operation multiplies the k-th row of our matrix by alpha,

• Pij: this operation switches rows i and j of our matrix,

• Eij(↵): this operation adds row i multiplied by ↵ to row j.

Example: Let’s see how these work. Let

A =

0

@
1 2 3
4 5 6
7 8 9

1

A
.

Then

P23A =

0

@
1 2 3
7 8 9
4 5 6

1

A
,

where we’ve switched rows 2 and 3. Similarly,

M1(2)A =

0

@
2 4 6
4 5 6
7 8 9

1

A
,

and we’ve multiplied the first row by 2. Lastly,

E13(2)A =

0

@
1 2 3
4 5 6

7 + 2 ⇤ 1 8 + 2 ⇤ 2 9 + 2 ⇤ 3

1

A =

0

@
1 2 3
4 5 6
9 12 15

1

A
.

We’ve simply added twice the first row to the third row.

The idea behind these operations is that we can use them to bring a matrix to its
RREF (row-reduced echelon form). Now, what on earth is the RREF?

Definition (RREF): a matrix is in row-reduced echelon form if:

(1) the first non-zero element in any row is 1 (this is called a leading 1),

(2) all elements in the same column as a leading 1 are 0,

(3) a leading 1 in a row is to the right of the leading 1’s in all rows above it,
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(4) if there are any rows with all zeros, they are at the bottom.

Example: Let’s see how we can bring a matrix to its RREF. Let’s use our familiar
matrix:

0

@
1 2 3
4 5 6
7 8 9

1

A E12(�4), E13(�7)!

0

@
1 2 3
0 �3 �6
0 �6 �12

1

A

M2(�1/3), M3(�1/6)!

0

@
1 2 3
0 1 2
0 1 2

1

A

E21(�2), E23(�1)!

0

@
1 0 �1
0 1 2
0 0 0

1

A
,

which is RREF. Thus

RREF

0

@
1 2 3
4 5 6
7 8 9

1

A =

0

@
1 0 �1
0 1 2
0 0 0

1

A
.

Why is this a useful thing to do? Why do we want to bring a matrix to its RREF?

Gaussian elimination: solving systems of linear equations

Suppose we want to solve the system of equations
8
<

:

x1 + x2 � 10x3 = 1
�x1 + 10x3 = �2

x1 + 4x2 � 5x3 = �1
.

We can write this in matrixform as
Ax = b,

where

A =

0

@
1 1 �10
�1 0 10

1 4 �5

1

A
, x =

0

@
x1

x2

x3

1

A
, b =

0

@
1
�2
�1

1

A
.

Now we consider the augmented matrix:

(A|b) =

0

@
1 1 �10 | 1
�1 0 10 | �2

1 4 �5 | �1

1

A
.

This augmented matrix represents the system of equations we want to solve: the first row
represents the first equation, the second row the second equation and so on. Similarly,
the first column corresponds to the variable x1, etc. The last column corresponds to the
right-hand side of the original equations. Thus, every row corresponds to an equation,
and every column (except the last one) corresponds to a variable.

Now we see what the elementary row operations do, in terms of the underlying equa-
tions:
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• Pij: this switches the order of the equations i and j,

• Mi(↵): this multiplies the i-th equation by ↵, and

• Eij(↵): this adds multiples of equations.

The important observation about all of these operations is that none of them a↵ect the
solutions of the equations we’re trying to solve. Thus, if we use these operations to bring
a matrix to its RREF, we can solve the equations corresponding to that RREF and the
solutions will be the same. That’s dandy: the solutions for the equations corresponding
to the RREF are A LOT easier to find than those of the original equations!

Example: Let’s use our previous augmented matrix:
0

@
1 1 �10 | 1
�1 0 10 | �2

1 4 �5 | �1

1

A E12(1), E13(�1)!

0

@
1 1 �10 | 1
0 1 0 | �1
0 3 5 | �2

1

A

E21(�1), E23(�3)!

0

@
1 0 �10 | 2
0 1 0 | �1
0 0 5 | 1

1

A

M3(1/5)!

0

@
1 0 �10 | 2
0 1 0 | �1
0 0 1 | 1/5

1

A

E31(10)!

0

@
1 0 0 | 4
0 1 0 | �1
0 0 1 | 1/5

1

A
,

from which it follows immediately (remember: columns correspond to variables; the last
column corresponds to the right-hand side) that

x1 = 4, x2 = �1, x3 = 1/5.

I’m not saying that for any given system, this is the most e�cient way to solve it, but
it most definitely is the most systematic way. And there’s value in that: this is the way
computers solve linear systems (with minor modifications). It’s tedious, but braindead.
Sounds like a good idea!

Example: Let’s do another example. This time, we’ll consider a system of equations that
depends on a parameter. We’ll investigate how the solutions depend on that parameter.
Our system is 8

<

:

x1 � x2 + x3 = �1
x2 � x3 = 3

x1 + x2 � x3 = a

,

where a is a real parameter. The augmented matrix is
0

@
1 �1 1 | �1
0 1 �1 | 3
1 1 �1 | a

1

A
.
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RREF, here we come!

0

@
1 �1 1 | �1
0 1 �1 | 3
1 1 �1 | a

1

A E13(�1)!

0

@
1 �1 1 | �1
0 1 �1 | 3
0 2 �2 | a + 1

1

A

E21(1), E23(�2)!

0

@
1 0 0 | �1
0 1 �1 | 3
0 0 0 | a� 5

1

A
.

We’re not at our desired RREF yet, but we have to consider two di↵erent cases.

Case 1. a = 5 Then we have

0

@
1 0 0 | �1
0 1 �1 | 3
0 0 0 | a� 5

1

A =

0

@
1 0 0 | �1
0 1 �1 | 3
0 0 0 | 0

1

A
.

This matrix is RREF. The underlying equations are:
⇢

x1 = 2
x2 � x3 = 3

)
⇢

x1 = 2
x2 = 3 + x3

.

We can write these solutions in vectorform:
0

@
x1

x2

x3

1

A =

0

@
2

x3 + 3
x3

1

A =

0

@
2
3
0

1

A + x3

0

@
0
1
1

1

A
.

We see that there are an infinite number of solutions in this case: we get to choose
whatever value we want for x3, and all such values result in solutions. Notice that in this
case, we obtained no information about our solution from the third equation, which is
why we got to choose one of the variables.

Case 2. a 6= 5 Then our matrix reduces to

0

@
1 0 0 | �1
0 1 �1 | 3
0 0 0 | a� 5

1

A
.

The equation corresponding to the third row says

0 = a� 5,

which is not true, since a 6= 5. Thus, in this case, there are no solutions!
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Lecture 18. Systems and linear algebra III: linear
dependence and independence

Let’s get right to it:

Definition (Linear (in)dependence): the vectors x

(1), x

(2), . . . , x

(n) are called
linearly dependent if there exist constants k1, k2, . . . , kn (not all zero) such that

k1x
(1) + k2x

(2) + . . . + knx
(n) = 0.

In other words: at least one of the vectors can be written as a linear combination of the
others. If the vectors are not linearly dependent, they are called linearly independent.

If the vectors are linearly dependent, we are often interested in finding out the values
of the constants k1, k2, . . . , kn to find out what relationship exists between the vectors.

Example: Are

x

(1) =

0

@
2
1
3

1

A
, x

(2) =

0

@
0
1
1

1

A
, x

(3) =

0

@
�1

2
1

1

A

linearly dependent or independent? Or: can we find constants k1, k2 and k3 (not all zero)
such that

k1x
(1) + k2x

(2) + k3x
(3) = 0.

Let’s write this last equation out in more detail. We have

k1

0

@
2
1
3

1

A + k2

0

@
0
1
1

1

A + k3

0

@
�1

2
1

1

A = 0,

or rewritten as a regular system of equation:

8
<

:

2k1 � k3 = 0
k1 + k2 + 2k3 = 0
3k1 + k2 + k3 = 0

.

Let’s rewrite this system in matrixform. We get

0

@
2 0 �1
1 1 2
3 1 1

1

A

0

@
k1

k2

k3

1

A =

0

@
0
0
0

1

A
.

This is clarifying: the matrix we have to row-reduce is nothing but the matrix where we
put the first vector in the first column, the second vector in the second column, and so
on. We could work with the augmented matrix and add a column of zeros at the end,
but that doesn’t do any good for anyone involved so we might as well leave it o↵. Let’s
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start row-reducing.
0

@
2 0 �1
1 1 2
3 1 1

1

A P12!

0

@
1 1 2
2 0 �1
3 1 1

1

A

E12(�2), E13(�3)!

0

@
1 1 2
0 �2 �5
0 �2 �5

1

A

M2(�1/2)!

0

@
1 1 2
0 1 5/2
0 �2 �5

1

A

M2(�1/2)!

0

@
1 0 �1/2
0 1 5/2
0 0 0

1

A
,

from which it follows that 8
>>><

>>>:

k1 �
1

2
k3 = 0

k2 +
5

2
k3 = 0.

It follows that we can choose k3 to be whatever we want. Now, I don’t know what you
want, but if you just manage to convince yourself to pick k3 6= 0, everyone’s happy. Given
that we’re in this for the perennial pursuit of happiness, we’ll proceed this way. We’ll
even be smart about it: to avoid fractions, we’ll pick k3 = 2. Then

k3 = 2, k1 = 1, k2 = �5.

This implies that according to our calculations

x

(1) � 5x(2) + 2x(3) = 0,

which you can easily check. Thus the three vectors are linearly dependent.

Example: Let

x

(1) =

✓
1
2

◆
, x

(2) =

✓
2
1

◆
.

In order to test the linear dependence of these vectors, we have to rowreduce the matrix
✓

1 2
2 1

◆
E12(�2)!

✓
1 2
0 �3

◆

M2(�1/3)!
✓

1 2
0 1

◆

E21(�2)!
✓

1 0
0 1

◆
.

This gives rise to the system ⇢
k1 = 0
k2 = 0

,
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and thus the vectors are linearly independent.

Example: Let’s finish with a minor bang: consider the following five vectors:

x

(1) =

0

BB@

1
2
2
3

1

CCA , x

(2) =

0

BB@

�1
0
3
1

1

CCA , x

(3) =

0

BB@

�2
�1

1
0

1

CCA , x

(4) =

0

BB@

�3
0
�1

3

1

CCA , x

(5) =

0

BB@

1
1
�3

1

1

CCA .

We have to rowreduce the following matrix:

0

BB@

1 �1 �2 �3 1
2 0 �1 0 1
2 3 1 �1 �3
3 1 0 3 1

1

CCA
E12(�2), E13(�2), E14(�3)!

0

BB@

1 �1 �2 �3 1
0 2 3 6 �1
0 5 5 5 �5
0 4 6 12 �2

1

CCA

M3(1/5)!

0

BB@

1 �1 �2 �3 1
0 2 3 6 �1
0 1 1 1 �1
0 4 6 12 �2

1

CCA

P23!

0

BB@

1 �1 �2 �3 1
0 1 1 1 �1
0 2 3 6 �1
0 4 6 12 �2

1

CCA

E21(1), E23(�2), E24(�4)!

0

BB@

1 0 �1 �2 0
0 1 1 1 �1
0 0 1 4 1
0 0 2 8 2

1

CCA

E31(1), E32(�1), E34(�2)!

0

BB@

1 0 0 2 1
0 1 0 �3 �2
0 0 1 4 1
0 0 0 0 0

1

CCA .

We obtain the system 8
<

:

k1 + 2k4 + k5 = 0
k2 � 3k4 � 2k5 = 0
k3 + 4k4 + k5 = 0

.

We get to choose both k4 and k5 at will. This implies that there’s more than one rela-
tionship between the five vectors. Let’s choose k4 = 1, k5 = 0. Then

k1 = �2, k2 = 3, k3 = �4,

and
�2x(1) + 3x(2) � 4x(3) + x

(4) = 0,

which is easily verified. Alternatively, choose k4 = 0 and k5 = 1. Then

k1 = �1, k2 = 2, k3 = �1,
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given rise to
�x

(1) + 2x(2) � x

(3) + x

(45) = 0,

which is also easily verified.

Let’s finish with a few remarks.

• Suppose we are working in dimension N , meaning all vectors are that size. Suppose
M vectors are given. If M > N then these vectors are always linearly dependent:
it is impossible to have more independent vectors than the dimension. In terms of
the linear system we have to solve, this means that we have more variables than
equations. Of course, we’ll get to choose some of the variables to be non-zero.
Therefore the vectors are linearly dependent.

• If we have fewer or an equal number of vectors than their dimension, than typi-

cally these vectors are linearly independent. Of course, if things go wrong and the
numbers conspire against us, it is possible for the vectors to be dependent. This
happens quite frequently in course notes, homework problems and exams.
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Lecture 19. Systems and linear algebra IV: the in-
verse matrix and determinants

Note: For this lecture, the matrix A we’ll consider has to be square, so it’s number of
rows equals its number of columns.

The inverse matrix

Let’s look back at solving linear systems

Ax = b.

Now, if these were just numbers, we’d have

x =
b

A

.

For matrices, this doesn’t make any sense: what does it mean to divide by a matrix?
Today we’ll construct a matrix which we’ll denote by A

�1 for which

AA

�1 = I and A

�1
A = I.

We call this matrix the inverse of A. If these hold, then

Ax = b

) A

�1
Ax = A

�1
b

) Ix = A

�1
b

) x = A

�1
b,

and we have a solution for our system! Several questions have to be answered:

• Is this a “good” way to solve Ax = b? Here “good” means e�cient: if there’s a
faster way to solve the system, then why bother? We’ll answer this question in a
little while.

• Is this always possible? The answer to this is clearly “no”! We already know that
this only works for square matrices. We’ll see below that it doesn’t even work for
all square matrices. Bummer!

• How do we find A

�1? We’ll answer this question now. It’ll also provide us with an
answer to the first question.

Here’s the method for finding an inverse matrix. We use its definition: the inverse
matrix is the matrix X that satisfies the equation

AX = I.
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If we can find an X that is the unique solution to this equation, then A

�1 = X. The way
to do this is to rowreduce the augmented matrix (A|I)! (I|X), in which case A

�1 = X.
Let’s do an example.

Example: Let

A =

0

@
1 1 �10
�1 0 10

1 4 �5

1

A
.

The above says that we have to solve the system AX = I, thus we consider the augmented
matrix (A|I) and rowreduce it.

0

@
1 1 �10 | 1 0 0
�1 0 10 | 0 1 0

1 4 �5 | 0 0 1

1

A E12(1), E13(�1)!

0

@
1 1 �10 | 1 0 0
0 1 0 | 1 1 0
0 3 5 | �1 0 1

1

A

E21(�1), E23(�3)!

0

@
1 0 �10 | 0 �1 0
0 1 0 | 1 1 0
0 0 5 | �4 �3 1

1

A

M3(1/5)!

0

@
1 0 �10 | 0 �1 0
0 1 0 | 1 1 0
0 0 1 | �4/5 �3/5 1/5

1

A

E31(10)!

0

@
1 0 0 | �8 �7 2
0 1 0 | 1 1 0
0 0 1 | �4/5 �3/5 1/5

1

A
,

from which it follows that

X =

0

@
�8 �7 2

1 1 0
�4/5 �3/5 1/5

1

A
.

Since this is the only solution we can find, it follows that A

�1 = X, thus

A

�1 =

0

@
�8 �7 2

1 1 0
�4/5 �3/5 1/5

1

A
.

Since this is the first inverse matrix we’ve found, our confidence level may be somewhat
below par. Let’s check that this is right (confidence level low or not, this is always a good
idea!):

A

�1
A =

0

@
1 1 �10
�1 0 10

1 4 �5

1

A

0

@
�8 �7 2

1 1 0
�4/5 �3/5 1/5

1

A =

0

@
1 0 0
0 1 0
0 0 1

1

A
,

and the same result for AA

�1, so that we have indeed found the inverse matrix.

At this point we can answer the question of whether solving a system of equations
by finding an inverse matrix is an e�cient way of doing things. The answer is negative:
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to construct the inverse matrix we have to solve in e↵ect as many linear systems as the
dimension of the matrix: as opposed to augmenting the matrix with one column, we have
to augment it with as many columns as the size of the matrix. Thus the rowreduction
is more work. However, if we’d have to solve the same system over and over again, just
with a di↵erent right-hand side (believe me, this happens), this would be beneficial: once
we have the inverse matrix, all we have to do is multiply this inverse matrix with the new
right-hand side and we’re done!

Example: Let’s see. Is calculating the inverse always this straightforward? You know
when I’m asking the answer is “no”. Let’s do another example:

A =

0

@
1 2 3
4 5 6
7 8 9

1

A
,

our favorite matrix! We have to rowreduce (A|I) again:
0

@
1 2 3 | 1 0 0
4 5 6 | 0 1 0
7 8 9 | 0 0 1

1

A E12(�4), E13(�7)!

0

@
1 2 3 | 1 0 0
0 �3 �6 | �4 1 0
0 �6 �12 | �7 0 1

1

A

M2(�1/3)!

0

@
1 2 3 | 1 0 0
0 1 2 | 4/3 �1/3 0
0 �6 �12 | �7 0 1

1

A

E21(�2), E23(6)!

0

@
1 0 �1 | �5/3 2/3 0
0 1 2 | 4/3 �1/3 0
0 0 0 | 1 �2 1

1

A
.

Since the RREF of the matrix A is not I, we have to conclude that it is impossible to
rowreduce (A|I) to the form (I|X), so that the inverse of A does not exist. In this case,
the matrix A is called singular.

Let’s recap all of this: when we’re presented with a square matrix A, and we want to
find its inverse, we construct the augmented matrix (A|I). We rowreduce this matrix. If
the result of this is an augmented matrix of the form (I|X), then A is non-singular and
it has an inverse, and A

�1 = X. Otherwise, A is called singular, and it does not have
an inverse.

Determinants

For any square matrix A, there is a number, det(A), called the determinant of A, which
dtermines if the matrix is singular or nonsingular. If the determinant is zero, the matrix
is singular. Otherwise it is nonsingular.

How do we calculate a determinant? This is not an easy question. I’ll give
you the general method below, but I won’t show you why it works. That would require
more time than we can a↵ord at this point. The theory of determinants is a large and
important part of linear algebra. Unfortunately, we can only do a little bit of it.

Let’s see how things work for matrices of di↵erent sizes:
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• 1⇥ 1 matrices: in this case det(A) = A, the only entry in the matrix.

• 2⇥ 2 matrices: let

A =

✓
↵ �

� �

◆
.

Then
det(A) = ↵� � ��.

In the previous lecture we’ve seen that two two-dimensional vectors are linearly
independent if the RREF of the matrix formed from them has a zero row, or in
other words if this matrix is singular. In that case one of the vectors is a multiple
of the other. Thus

v

(1) =

✓
v1

v2

◆
, v

(2) =

✓
cv1

cv2

◆
,

where c is the proportionality constant. Then

A = (v(1)
v

(2)) =

✓
v1 cv1

v2 cv2

◆
.

The determinant of this matrix is det(A) = v1cv2 � cv1v2 = 0, showing that the
matrix A is indeed singular.

Now, let f(x) and g(x) be two functions. We form the two vectors

v

(1) =

✓
f

f

0

◆
, v

(2) =

✓
g

g

0

◆
.

These two vectors are linearly dependent if the two functions f and g are multiples
of each other, thus if the functions are linearly dependent. The determinant of the
matrix A = (v(1)

v

(2)) is

det

✓
f g

f

0
g

0

◆
= fg

0 � f

0
g = W (f, g).

Thus the Wronskian of two functions can be written as a determinant. This is good
to know: now we have a pretty good idea how we’ll generalize the idea of more than
two functions being linearly dependent: we’ll form the determinant of the matrix
with as columns the functions and their derivatives.

• 3⇥ 3 matrices: let

A =

0

@
a b c

d e f

g h i

1

A
.

Then
det(A) = (aei + bfg + cdh)� (gec + hfa + idb).

There’s many good ways to remember this formula. The easiest one might be to
construct the auxialiary matrix

0

@
a b c a b

d e f d e

g h i g h

1

A
.
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Now the determinant of A is formed by adding the terms constructed of multiplying
the entries with entries one over and down, and subtracting the terms constructed
of multiplying the entries with entries one up and over.

• For any size matrix: transform A to its RREF . In order to do this you’ll need
several Eij(k)’s, several Mj(↵)’s and some Pij’s. Once you’re done, the determinant
of A can be found as:

det(A) =
(�1)number of P

ij

’s

product of all the ↵’s
⇥

⇢
1 if RREF = I

0 if RREF 6= I

.

We won’t prove this result, but it provides an e�cient way of computing the deter-
minant of a matrix of size greater than three.

Example: In the earlier part of this lecture we calculated the inverse matrix of

A =

0

@
1 1 �10
�1 0 10

1 4 �5

1

A
.

We now calculate the determinant of this matrix two di↵erent ways:

1. Using the definition of the determinant for a three-by-three matrix, we have

det(A) = 1 ⇤ 0 ⇤ (�5) + 1 ⇤ 1 ⇤ 10 + (�1) ⇤ 4 ⇤ (�10)

� 1 ⇤ 0 ⇤ (�10)� 4 ⇤ 10 ⇤ 1� (�1) ⇤ 1 ⇤ (�5)

= 0 + 10 + 40� 0� 40� 5

= 5.

2. Using the transformation to RREF, we get

det(A) =
1

1/5
⇥ 1 = 5.

Of course we obtain the same result both ways.

Other properties of determinants that we will not prove are: (i) det(AB) = det(A)det(B),
and (ii) det(AT ) =det(A).

In summary, the following facts are all equivalent:

• det(A) = 0,

• A is singular,

• the columns of A are linearly dependent,

• the rows of A are linearly dependent,

• A

�1 does not exist

• RREF (A) has zero rows

• The system Ax = b either has no solutions, or an infinite number of solutions.
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Lecture 20. Systems and linear algebra V: eigenvalues
and eigenvectors

We start with a note on solving linear systems. Suppose we want to solve

Ax = b,

with A a square matrix. Suppose we know that the determinant of A is non-zero. Then
A is nonsingular and it has an inverse. Thus

x = A

�1
b,

which is the only solution of the system.
In particular, if A is nonsingular, then x = 0 is the only solution of the system

Ax = 0.

Thus, if we want interesting solutions of the equation Ax = 0, we want det(A) =
0, so that A is singular.

When we multiply a matrix by a vector, we get a vector. This new vector typically
is very di↵erent from the original vector: it will have a di↵erent length, and a di↵erent
direction. Given a square matrix A, are there particular vectors ⇠ for which the new
vector A⇠ is in the same direction as the original vector ⇠? That means that the new
vector A⇠ is just a scalar multiple of the old vector ⇠. Using equations:

A⇠ = �⇠,

where � is the scaling factor. Such vectors are called eigenvectors, and the corresponding
scaling factors are called eigenvalues1.

Let’s rewrite this equation:

A⇠ = �⇠

) A⇠ � �⇠ = 0

) A⇠ � �I⇠ = 0

) (A� �I)⇠ = 0.

Now, we don’t want any zero eigenvectors: that’s not interesting: the zero vector always

gets mapped to the zero vector. In fact, in the homeworks and exams that you’ll do on
this topic, if you ever write down a zero eigenvector, you will be moved to the back of the
class instantaneouly! Don’t ever write down a zero eigenvector! Okay, how can we
get a non-zero eigenvector: according to our starting note, the equation (A � �I)⇠ = 0
will only have the zero solution, unless we impose that the determinant of A��I is zero.
So, we better impose this:

det(A� �I) = 0.

1
The word “eigen” is German. It means “self”: the eigenvectors of a matrix are the vectors that get

mapped by the matrix to themselves, up to a scaling factor, the eigenvalue.

101



This equation is called the characteristic equation of the matrix A: it determines the
eigenvalues since the eigenvectors don’t enter in to this equation. Let’s do a few examples.

Example: Consider

A =

✓
�2 1

1 �2

◆
.

The characteristic equation is

det

✓
�2 1

1 �2

◆
� �

✓
1 0
0 1

◆�
= 0

) det

✓
�2 1

1 �2

◆
�

✓
� 0
0 �

◆�
= 0

) det

✓
�2� � 1

1 �2� �

◆
= 0

) (�2� �)2 � 1 = 0

) (� + 2)2 = 1

) � + 2 = ±1

) �1 = �1, �2 = �3.

Example: Consider

A =

0

@
1 2 3
4 5 6
7 8 9

1

A
.

The characteristic equation is

det

2

4

0

@
1 2 3
4 5 6
7 8 9

1

A� �

0

@
1 0 0
0 1 0
0 0 1

1

A

3

5 = 0

) det

0

@
1� � 2 3

4 5� � 6
7 8 9� �

1

A = 0

) (1� �)(5� �)(9� �) + 84 + 96

�21(5� �)� 8(9� �)� 48(1� �) = 0

) ��

3 + 15�2 + 10� = 0.

) � = 0; � �

2 + 15� + 10 = 0

) �1 = 0; �2,3 =
�15 ±

p
225 + 40

�2

) �1 = 0; �2,3 =
15⌥

p
265

2
.

We see that to construct the characteristic equation, we just subtract � from the
elements on the diagonal of the matrix, then we equate the determinant of the resulting
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matrix to zero. We also see that the characteristic equation of an n ⇥ n matrix will be
an n-th degree polynomial. Thus, in general, an n ⇥ n matrix will have n eigenvalues,
including multiplicities. Keep in mind that these eigenvalues can be complex numbers!

Example: Let

A =

✓
1 �1
1 3

◆

The eigenvalues of A are determined by

det

✓
1� � �1

1 3� �

◆
= 0

) (1� �)(3� �) + 1 = 0

) �

2 � 4� + 4 = 0

) (�� 2)2 = 0

) �1 = �2 = 2.

Thus the matrix A has two eigenvalues, both equal to 2.

Example: Let

A =

✓
2 �1
1 2

◆

The eigenvalues of A are determined by

det

✓
2� � �1

1 2� �

◆
= 0

) (2� �)2 + 1 = 0

) (�� 2)2 = �1

) �1,2 � 2 = ±i

) �1,2 = 2 ± i

) �1 = 2 + i; �2 = 2� i.

Thus the matrix A has two complex conjugate eigenvalues.

How about the eigenvectors? This question is now easier to answer: we know
how to find the eigenvalues. For any eigenvalue � we found, all we have to do is find the
nontrivial (i.e., non-zero) solution ⇠ of

(A� �I)⇠ = 0.

By virtue of the eigenvalues making A � �I a singular matrix, we know this equation
has nontrivial solutions for ⇠. This calculation needs to be done for all eigenvalues, if we
want to find all eigenvectors of A. Let’s do some examples.

Example: Let

A =

✓
�2 1

1 �2

◆
.
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We’ve seen above that the eigenvalues of this matr-ix are �1 = �1 and �2 = �3. Let’s
find their corresponding eigenvectors.

• �1 = �1: we have to find the nontrivial solution of
✓
�2� �1 1

1 �2� �1

◆ ✓
⇠1

⇠2

◆
=

✓
0
0

◆
)

✓
�1 1

1 �1

◆ ✓
⇠1

⇠2

◆
=

✓
0
0

◆
.

The most systematic way to do this is to row-reduce the resulting matrix:
✓
�1 1

1 �1

◆
P12!

✓
1 �1
�1 1

◆
E12(1)!

✓
1 �1
0 0

◆
.

Thus
⇠1 � ⇠2 = 0,

and we can choose ⇠1 = 1, which gives ⇠2 = 1. The eigenvector corresponding to
�1 = �1 is

⇠ =

✓
1
1

◆
,

or any multiple thereof. You should verify that indeed

A⇠ = �⇠.

• �2 = �3: We now have to repeat the above for �2 = �3. Now we have to find the
nontrivial solution of

✓
�2� �2 1

1 �2� �2

◆ ✓
⇠1

⇠2

◆
=

✓
0
0

◆
)

✓
1 1
1 1

◆ ✓
⇠1

⇠2

◆
=

✓
0
0

◆
.

The most systematic (which is not the fastest) way to do this is to row-reduce the
resulting matrix:

✓
1 1
1 1

◆
E12(�1)!

✓
1 1
0 0

◆
.

Thus
⇠1 + ⇠2 = 0,

and we can choose ⇠1 = 1, which gives ⇠2 = �1. The eigenvector corresponding to
�1 = �1 is

⇠ =

✓
1
�1

◆
,

or any multiple thereof. You should verify that

A⇠ = �3⇠.

Example: Let

A =

0

@
0 1 1
1 0 1
1 1 0

1

A
.

You should check that the eigenvalues of this matrix are �1 = 2 and �2 = �3 = �1.
Hence �1 is an eigenvalue of multiplicity 2.
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• �1 = 2: we have to rowreduce the matrix A� 2I:

0

@
�2 1 1

1 �2 1
1 1 �2

1

A P13!

0

@
1 1 �2
1 �2 1
�2 1 1

1

A

E12(�1), E13(2)!

0

@
1 1 �2
0 �3 3
0 3 �3

1

A

M2(�1/3)!

0

@
1 1 �2
0 1 �1
0 3 �3

1

A

E21(�1), E23(�3)!

0

@
1 0 �1
0 1 �1
0 0 0

1

A
.

Thus our eigenvector can be chosen to be

⇠ =

0

@
1
1
1

1

A
,

or any scalar multiple thereof.

• �2 = �3 = �1: we have to rowreduce the matrix A + I:

0

@
1 1 1
1 1 1
1 1 1

1

A E12(�1), E13(�1)!

0

@
1 1 1
0 0 0
0 0 0

1

A
.

Thus
⇠1 + ⇠2 + ⇠3 = 0.

The eigenvectors are of the form

⇠ =

0

@
⇠1

⇠2

⇠3

1

A =

0

@
�⇠2 � ⇠3

⇠2

⇠3

1

A = ⇠2

0

@
�1

1
0

1

A + ⇠3

0

@
�1

0
1

1

A
.

It follows from this that there are two linearly independent eigenvectors. We can
choose

⇠

(1) =

0

@
�1

1
0

1

A
, ⇠

(2) =

0

@
�1

0
1

1

A
.

As before you should check that for both of these vectors A⇠ = �⇠.

In the previous example, we found that an eigenvalue of multiplicity two had two
linearly independent eigenvectors. You might be tempted to conclude that corresponding
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to a certain eigenvalue, there are always as many linearly independent eigenvectors as
the multiplicity of that eigenvalue. This is not the case, as we’ll see in the next example.

Example: Let

A = �
✓

1 �1
1 3

◆
.

You can (and you should) check that the two eigenvalues of this matrix are equal. They
are �1 = �2 = 2. However, when we rowreduce A� 2I we get

✓
�1 �1

1 1

◆
P12!

✓
1 1
�1 �1

◆
E12(1)!

✓
1 1
0 0

◆
,

so that there’s only one eigenvector, namely

⇠ =

✓
1
�1

◆
.

In the previous example, there was only one eigenvector for an eigenvalue of mul-
tiplicity two. The general rule is that there are at most as many eigenvectors as the
multiplicity of the eigenvalue. Further, there is always at least one eigenvector for any
eigenvalue.

Example: Let’s do a final example: what happens when the eigenvalues are complex?
Well, the answer is pretty straightforward: the corresponding eigenvectors will be complex
as well. Consider

A =

✓
2 �1
1 2

◆
.

We’ve seen that �1 = 2 + 1, and �2 = 2 � 1. What are the eigenvectors? For the first
one, we have to rowreduce A� (2 + i)I:

✓
�i �1
1 �i

◆
P12!

✓
1 �i

�i �1

◆

E12(i)!
✓

1 �i

0 0

◆
,

so that the eigenvector can be chosen to be

⇠

(1) =

✓
i

1

◆
,

similarly,

⇠

(2) =

✓
�i

1

◆
,

corresponding to �2 = 2� i. Note that the second eigenvector is the complex conjugate
of the first one. This is also a general rule: for real matrices, eigenvectors corresponding
to complex conjugate eigenvalues can be chosen to be complex conjugate.
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Lecture 21. First-order linear systems

General considerations

Consider a system of N linear di↵erential equations. In its most general form, this is
written as

8
>>><

>>>:

x

0
1 = p11(t)x1 + p12(t)x2 + . . . + p1N(t)xN + g1(t)

x

0
2 = p21(t)x1 + p22(t)x2 + . . . + p2N(t)xN + g2(t)

...
x

0
N = pN1(t)x1 + pN2(t)x2 + . . . + pNN(t)xN + gN(t)

.

With what we’ve learned about matrices, we can write this as

x

0 = Px + g,

where

x =

0

B@
x1
...

xN

1

CA , g =

0

B@
g1
...

gN

1

CA ,

and

P =

0

BBB@

p11 p12 . . . p1N

p21 p22 . . . p2N
...

...
. . .

...
pN1 pN2 . . . pNN

1

CCCA
..

Example: Consider the third-order equation

y

000 + 2y0 + 5y = 7.

Since this equation is of third order, we introduce three variables:
8
<

:

y1 = y,

y2 = y

0
,

y3 = y

00
,

Then 8
<

:

y

0
1 = y

0 = y2,

y

0
2 = y

00 = y3,

y

0
3 = y

000 = �2y0 � 5y + 7 = �2y2 � 5y1 + 7.

Thus our corresponding first-order system is
8
<

:

y

0
1 = y2,

y

0
2 = y3,

y

0
3 = �2y2 � 5y1 + 7.
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