Paul's tips for plots
 Physics 495

What makes a good plot?

What I recommend...

- Make a script to build each figure from scratch.
- Save data in files...
- Code everything you need to make the figure
- Expect to go through > 5 iterations
- MATLAB: save as fig and export format
- Fig allows you to modify many things
- Do not use Illustrator until the figures are close to final.
- Print at the correct size and see how it looks on paper
- Show your figures to others for feedback
- Why are figures important?
- Some people will just look at the figures

Partial checklist:

- Vector not raster (pdf, eps, ...)
- Axis labels
- Legend
- Right Size

1: Studying polynomials!

- Problem: No labels or legend!

Labeling axes:

My own style:

- Name: Symbol (Units)
- Why name: people read only the figures
- Why Symbol: Be precise.
- Units: _ if unit-less, AU if arbitrary

Abbreviations:
arb. unit, ${ }^{[1]}$
arb. u.,

WikipediA

The Free Encyclopedia
AU, [3]

a.u. ${ }^{[4]}$

Among these, "AU" and "a.u." are common abbreviations for astronomical units and atomic units. ${ }^{[5]}$ For this reason, Physical Review journals, the Japanese Journal of Applied Physics, and an increasing number of other academic journals, recommend against using "a.u." (Jpn. J. Appl. Phys recommends "arb. unit" instead). ${ }^{[6]}$

Include 0 or Plot Change

- People will intuitively assume that 0 is on the plot
- Won't understand variation if 0 isn't included
- If no 0 , have a good reason...
- For instance:
- Problem: Plot by year ($\mathrm{t}=1990,1991 \ldots$. $)$
- Solution: Plot by year relative to start... $(\Delta t=0,1 \ldots)$

2: Studying polynomials!

- Problem: Legend overlaps lines!

3: Studying polynomials!

Too many Ricks解

Cant see!

- Problem: Plot size!

Line weight too small

$\pi \pi$

Right size:

- Golden ratio: Use: 5 in $\times 3$ in

- Font size: Use 10-12 pt, 8 pt for exponents
- Line weight (width): Use 0.5-1 pt
- Number of ticks: 3-10
- Legend: Good size, no overlap, clean

4: Studying polynomials!

Raster: tif, bmp, jpeg

Vector: pdf, eps, ...

- Problem: Raster versus vector

Bézier curves

Lossy, lossless, pixel depth

5: Studying polynomials!

- Great start!

My code in MATLAB

```
close all;
figure(1);
clf;
x = -10:.1:10;
y0 = 0*x.^0;
y1 = x.^1/10;
y2 = x.^2/100;
y3 = x.^3/1000;
plot( x, y0, 'r' );
hold on;
plot( x, y1, 'g' );
plot( x, y2, 'c' );
plot( x, y3, 'b' );
% print first figure
print -dpdf ~/Desktop/print1.pdf
% Add labels and legend
```

```
ylabel( 'Function: y (AU)');
xlabel( 'Variable: x (AU)');
legend( {'0th order','1st order','2nd
order','3rd order'})
print -dpdf ~/Desktop/print2.pdf
% Put legend in the right place
legend( {'0th order','1st order','2nd
order','3rd
order'},'Location','SouthEast')
print -dpdf ~/Desktop/print3.pdf
doPageFormat( [5,3] );
```

% raster

```
% raster
print -dtiff -r72 ~/Desktop/print4.tif
print -dtiff -r72 ~/Desktop/print4.tif
% vector
% vector
print -dpdf ~/Desktop/print5.pdf
```

```
print -dpdf ~/Desktop/print5.pdf
```

```

\section*{doPageFormat.m}
```

function doPageFormat(ss, inv_flag)
if ~exist('ss') || isempty(ss)
ss = [5,3];
end
h = gcf;
if exist('inv_flag', 'var') \&\& inv_flag
set(h,'InvertHardcopy', 'off');
end
set(h,'PaperPosition',[0, 0, ss]);
set(h,'PaperSize',[ss]);
end

```

\section*{6: Studying polynomials!}



Get rid of the box Fine-tune weight
- Fine-tuned in Adobe Illustrator (or Inkscape)

\section*{7: Studying polynomials!}


Annotalion: For lalks only
- Add other annotation elements to help in talks...

\section*{Things to watch out for...}
- Bounding box
- Powerpoint usually rasterizes pdf automatically (be careful with the size)
- Colors: CMYK vs RGB
- Beware light \& dark colors
- Yellow cannot be seen against white on screen
- Dark colors ~ black for lines with small weight

\section*{Bars versus lines versus point...}


\section*{Bars versus lines versus point...}

- Does it make sense to interpolate?
- No (Bar plot)
- Yes (Line plot)
- Exp data:
- Show values!

\section*{Importance of white space...}


\section*{Too much Tufte-ness}
- Some have argued that only measured values should be ticked and labeled on plots...

- Are you nuts?!?```

