ATMS 558 Problem Set #2

1) Problem 11.2 "<u>Sources of Tropospheric O3</u>" in Jacob textbook

2) Chemical regimes in the upper troposphere.

Aircraft emissions of NO_x may increase ozone concentrations in the upper troposphere where it is an efficient greenhouse gas. We examine here the sensitivity of ozone to NO_x in the upper troposphere under different conditions. The NO_x radicals (NO_x \equiv NO + NO₂) cycle through the reactions:

$NO + O_3 \rightarrow NO_2 + O_2$	(1)
$NO_2 + hv \xrightarrow{O_2} NO + O_3$	(2)

Assume that the [NO]/[NO₂] ratio is determined solely by reactions (1)-(2) (a reasonable approximation in the upper troposphere). For the rest of this problem, write [NO] = α [NO_x] and [NO₂] = (1- α)[NO_x] where α is a coefficient assumed constant.

The HO_x radicals (HO_x \equiv OH + HO₂) in the upper troposphere are produced at a rate $P(HO_x)$ that we assume to be constant. They cycle and are consumed principally by the following reactions:

$$HO_2 + NO \rightarrow OH + NO_2 \tag{3}$$

$$OH + CO \xrightarrow{O_3} HO_2 + CO_2$$
(4)

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2 \tag{5}$$

$$OH + HO_2 \rightarrow H_2O + O_2 \tag{6}$$

$$HO_2 + NO_2 \xrightarrow{M} HNO_4$$
 (7)

$$OH + NO_2 \xrightarrow{M} HNO_3$$
 (8)

- 6.1 Identify four different HO_x sinks in the above mechanism.
- 6.2 We can distinguish four different chemical regimes in the upper troposphere depending on the dominant reaction for HO_x loss. Let us model each of these regimes by considering the limiting case where loss of HO_x is exclusively by the dominant reaction. Further assume that the HO_x radicals are in chemical steady state, and that HO_x cycling is efficient so that the HO_x cycling reactions are much faster than the HO_x loss reactions. For each regime, determine the dependence of the ozone production rate on $[NO_x]$.
- 6.3 Which of the four regimes applies to very low NO_x concentrations? to very high NO_x concentrations? Plot qualitatively the O₃ production rate as a function of [NO_x], identifying each chemical regime in the plot. Briefly conclude as to the challenge of predicting the response of O₃ to increasing aircraft NO_x emissions.