This Week: Towards Regional Climates

- Atmospheric Circulation Patterns
- Wet tropics, deserts, seasonality
- Stormy mid-latitudes
- Land/Sea Contrasts and Continentality

Spatial Radiation Imbalance

Copyright © 2004 Pearson Prentice Hall, Inc.

Poll Question

Where on Earth receives the highest 24-hr average solar flux in a single day?

Spatial Radiation Imbalance

Spatial Imbalance in Radiation

Spatial Radiation Imbalance

Spatial Imbalance in Energy Input \rightarrow Weather

Radiation surplus (and deficits) gives rise to heat and material transfer around Earth by the atmosphere and oceans

Atmosphere as a heat and material transport vehicle

- How does heat get transferred?
- What causes atmosphere to move in vertical and horizontal directions?

Latent Heat - Energy of Phase Transitions

- $\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$: Evaporation
- requires energy from surroundings
- $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{liq}):$ Condensation
- releases energy to surroundings

2,260 kJ of energy released (or required) per kg of water that condenses (or evaporates)

Evaporative Cooling (aka "sweating")

"Steam Burns" and Warm Bread

Moist and hot pasta (steam means lots of water vapor present)

Dry and crusty warm bread means not a lot of water vapor

Sauna (w/"steam") - a latent heat laboratory

Cloud formation releases latent heat to atmosphere

Latent Heat Release

Condensation, atmospheric motion, and cold beer

Dale R. Durran and Dargan M. W. Frierson

Abstract

The latent heat released when water condenses is an important driver of weather phenomena. And as a simple experiment shows, it also makes it tough to enjoy a frosty one in the summertime.

[^0]water vapor. The annual mean equator-to-pole contrast in enthalpy at the surface is about equally divided between contributions resulting from gradients in temperature and those from moisture; each gives about a $50-\mathrm{K}$ difference between the equator and the poles. Consistent with that $50-50$ split, moist processes account for roughly half of the total heat transport between the tropics and high latitudes.

Vertical heat transfer by latent-heat release occurs, for example, in a thunderstorm's updraft core. Like hot-air balloons, the updrafts are warmer than their environment and their ascent is powered by upward buoyancy forces. Rising blobs of air experience a drop in the surrounding atmospheric pressure and cool through adiabatic expansion. Con-

- https://youtu.be/SEnVeOfGTbQ

Latent Heat and Atmospheric Temperature

- The atmosphere has a variety of heat sources: radiation, conduction, convection, latent heat ($\mathrm{H}_{2} \mathrm{O}$!)

Atmosphere as a heat and material transport vehicle

- How does heat get transferred?
- What causes atmosphere to move in vertical and horizontal directions?

Atmospheric Motions

- Horizontal Motions: parallel to Earth's surface (the everyday wind)
- Vertical Motions: perpendicular to Earth's surface (up/down)

Poll Question

The atmosphere has a mass of $5.2 \times 10^{\wedge} 18 \mathrm{~kg}$, and thus feels a force due to gravity of $\sim 5 \times 10^{\wedge 19}$ Newtons,

Visual settings
Activate

Show results
㗊品 When poll is active, respond at PollEv.com/thornton211 Text THORNTON211 to $\mathbf{2 2 3 3 3}$ on show correct

Therefore, it is continually falling to the surface due to gravity and being replenished above from space

Clear results

Therefore, it feels the force due to friction which balances gravity

1 and 2

Neither 1 nor 2

Making Air Move

Pressure Gradient Force (PGF)

Air/water will move from a region of high pressure to low pressure

Water in a tub with horizontal pressure gradient

Pressure versus Altitude

Gases (air) are compressible fluids

Expect Pressure to decrease with altitude (height above ground)

"Compressible" equal-mass bricks of air stacked on each other

Pressure Decreases Exponentially w/Altitude

"Vertical Profile"

Gases (air) are compressible fluids, unlike liquids.

"Compressible" bricks of air stacked on each other

Pressure Decreases Exponentially w/Altitude

Gases (air) are compressible fluids, unlike liquids.

"Compressible" bricks of air stacked on each other

Pressure Decreases Exponentially w/Altitude

Gases (air) are compressible fluids, unlike liquids.

"Compressible" bricks of air stacked on each other

Barometric Law - "Hydrostatic Equation"

Pressure Gradient Force [because $\mathrm{P}\left(\mathrm{z}_{1}\right)>\mathrm{P}\left(\mathrm{z}_{2}\right)$]

Gravitational
Force
The atmosphere's tendency to be forced into space by pressure gradient, is balanced by force due to gravity (on average).

Summary (old and new)

- The atmosphere has a variety of heat sources: conduction, convection, latent heat ($\mathrm{H}_{2} \mathrm{O}$!), radiation
- T decreases from 0-15 km (troposphere), increases from 15 - 50 km (stratosphere), then decreases...
- Atmosphere is a collection of ideal gases $\rightarrow P=\rho R T ; P$ and therefore ϱ decrease exponentially with altitude
- Pressure is force/area; differences in P between two locations (e.g., altitude) will cause air motion

[^0]: Dale Durran is a professor of atmospheric sciences and Dargan Frierson is an associate professor of atmospheric sciences, both at the University of Washington in Seattle.

