ATM S 103 Hurricanes and Thunderstorms Their Science and Impacts

Nichas Anastasios (from http://www.severe-weather.eu)

Announcements

- Homework 2: due 6 PM on Friday (April 19)
- (kanglt@uw.edu)

- Mid-term: May 1
- A guest lecture: May 3 (Prof. Dargan Frierson)

Homework 1: problems and answers available from TA

Enhanced risk of severe thunderstorms

...THERE IS AN ENHANCED RISK OF SEVERE THUNDERSTORMS OVER PARTS OF THE SOUTHERN GREAT PLAINS...

...SUMMARY...

Scattered to numerous severe storms are expected from the Texas Panhandle to the Mid-Mississippi Valley from late afternoon through tonight, and from south-central to northeast Texas, mainly this evening into tonight. Very large hail, damaging winds, and a few tornadoes are possible.

...TX Panhandle to the Mid-MS Valley...

Highest confidence signal for severe storm development is across this region. Thunderstorms will form in the vicinity of the surface cyclone over the TX Panhandle by 21Z and then develop northeast along a quasi-stationary front across northwest OK to southeast KS through the early evening. Very steep mid-level lapse rates of 8-9 C/km will support a warm sector characterized by MLCAPE of 1000-2500 J/kg. Storms initially will pose a threat for very large hail and a couple tornadoes. However, upscale growth/consolidation is expected rather quickly given the degree of ascent and orientation of the deep-layer wind fields to the front. Latest CAMs are somewhat inconsistent with the degree of development into the higher-quality buoyancy across central OK.

40-50 kt effective shear will support potential for several bowing line segments as the cold front sharpens during the evening. Damaging winds, some embedded hail, and a few tornadoes will be possible as multiple MCSs likely persist east-northeast towards the Mid-MS Valley overnight.

Which of the following is NOT the associated with typical thunderstorm outbreaks?

high CAPE (convective available potential energy)

low CIN (convective inhibition)

low dew point near the surface

forced vertical motion

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Total Results

Answer: 3

- High CAPE
- Low CIN
- High dew point near the surface
- Force vertical motion (trigger)

Thunderstorm Induced Hazards (Yearly-averaged values)

- Tornadoes: 60-65 deaths, 1,500 injuries
- Lightning: 55-60 deaths, 400 injuries
- Flash floods: over 90 deaths
- Hail: over \$1 billion in crop damage
- Winds: can exceed 125 mph

(Source: NOAA Thunderstorms, Tornadoes, Lightning Preparedness Guide, NOAA/PA 201051)

Thunderstorm Frequency

7

Global Lightning Frequency

Observations of Lightning Events

Video: <u>https://www.youtube.com/watch?v=nBYZpsbu9ds</u>

Lightning

Super slow motion

10

Lightning: A Big Spark

- two points is big enough
 - 3,000,000 volts per meter in dry air
 - 1,000,000 volts per meter in rain filled air
- Lightning involves high voltages.
 - Benjamin Franklin didn't completely appreciate this.

Air will start to conduct if the voltage difference between

Topics for today

How do electrical charges develop in thunderstorms?

What should you do to avoid being struck by lightning?

12

Why do you see lightning before you hear thunder?

Because it takes a while for noise to be produced as air is heated by a lightning bolt.

Because sound travels much slower than light.

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

13

Answer: Because sound travels much slower than light

- Speeds in air: sound 340 m/s; light 3,000,000 m/s.
- Thunder is produced at virtually the same time as the lightning flash.
 - The electrical current in the lightning bolt heats the air almost instantly to 30,000 °C.
 - No time for the air to expand (change its density), so the pressure increases drastically.
 - Response to the region of enormously unbalanced pressure is the same as to a stick of exploding dynamite (boom).

- Generate separate regions of positive and negative charge.
- regions
 - Maybe relates to cosmic rays
 - Maybe ?

A Recipe for Lightning

• *Trigger* a bolt (an avalanche of electrons) between these

15

Basic Charge Distribution

Observations

- Region of maximum negative charge occur at environmental temperature of -15 °C.
- Charges develop after radar shows storm has developed falling graupel and hail (> 5mm in diameter).

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

18

Answer: True

Ice plays a key role in electrification.

19

Creating Charged Particles

- - Graupel and hail become negative
 - Ice crystals become positive

Falling graupel and hail *collide* with rising ice crystals

Separating the Charges

- top of the cloud.

Ice crystals (+ charge) keep rising and accumulate in the

Graupel and hail (– charge) remain lower in the cloud

Positive charge is induced at the surface by the negative charges aloft

Like charges repel Opposite charges attract

Stepped Leader Initiation

Starts by transferring negative charge toward the small region of positive charge near the cloud base

Zoom into this area

Stepped Leader Initiation

Starts by transferring negative charge toward the small region of positive charge near the cloud base

Stepped Leader Descends Below Cloud Base (showing charges) • Tries to find the path of least resistance toward the

Tries to find the path of le ground

Stepped Leader Slow Motion

Stepped Leader Descends Below Cloud Base (showing steps) • Tries to find the path of least resistance toward the

Tries to find the path of le ground

Streamers extend upward from high points on the surface.

Upward Streamer/ Leader Slow Motion

Return stroke caries the main discharge.

(negatives) flow downward from cloud.

Stroke moves upward from the surface, but electrons

- Flows down from above along the path of the previous discharge.
- Triggers subsequent return strokes (3-4 total flashes is common)

Dart Leader

Complete Lightning Event – Slow Motion

Complete Lightning Event – Normal Speed

Lightning Flash Normal Speed

- Weather Book, p. 131 suggests the lightning stroke upward."
- traveling downward,
 - But as we have seen the current flow propagates upwards.
- Confusing?

consists of "an intense wave of positive charge traveling

The current is carried by (negatively charged) electrons

How do the electrons flow downward, while the lightning propagates upward?

- Electrons=cars \bullet
- Ground at right, cloud base at left •

Flowing electrons (red highlight) = lightning discharge

Ferry line rotated into the vertical

Return stroke caries the main discharge.

(negatives) flow downward from cloud.

Stroke moves upward from the surface, but electrons

Slo-mo video

 Can see stepped leader and return strokes

36

Another Slo-Mo

- Note the more persistent strike
- This continuous current is more likely to ignite fires

37

Flashes: Intra-Cloud, Cloud-to-Ground Negative and Positive

A cloud-to-cloud lightning stroke

Helena Bragonfly (from http://www.severe-weather.eu)

A positive lightning stroke

Entoni Novosel (from http://www.severe-weather.eu)

Lightning Safety

W Cars provide safety from lightning because they are insulated from the ground by their tires.

True

False

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Total Results

False: lightning can easily jump across 6" of tire to the ground.

National Lightning Detection Network 2009 - 2018

C Vaisala 2019. All rights reserved. For display purposes only - any other use is prohibited without prior written consent from Vaisala.

US Lightning Fatalities 2009-2019

U.S. Lightning Fatalities 2009-2019

2009	ŤŤŤŤ ŤŤŤŤŤŤŤŤŤŤŤŤ ŤŤŤ
2010	ŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤ
2011	ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ
2012	ŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤ
2013	ŧİŧİİİİİİİİİİİİİİ
2014	ŤŤŤŤŤŤŤ ŤŤ ŤŤŤŤŤŤŤŤ
2015	ŧŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤ Ť
2016	ŧŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤ Ť
2017	ŤŢŢŢŢŢŢŢŢŢŢŢŢŢŢ
2018	Ť ŔŦŤŤŤŤŤŤŤŤŤŤŤŤŤŤ Ť
2019	0 so far this year

For more information: https://www.weather.gov/safety/lightning-victims

Image: A matrix in the initial state initial state initial state in the initial state initinitial state initial state initial state initiality ini

Lightning Fatalities by State, 2003-2012

Lightning Fatalities Weighted by Population by State, 2003-2012

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Total Results

Men are killed about four times as often.

NOAA Safety Guidance

- NO PLACE outside is safe when thunderstorms are in the area!!
- If you hear thunder, lightning is close enough to strike you.
- When you hear thunder, immediately move to safe shelter: a substantial building with electricity or plumbing or an enclosed, metal-topped vehicle with windows up.
- Stay in safe shelter at least 30 minutes after you hear the last sound of thunder.

Perilous situation

• Hair standing on end means you're charged up, strike is imminent

