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Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.
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Through Variable f, force T, torque i, current q, volumetric
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Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.
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Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.
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The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.
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Reference:	Chapter	13	of	Rowell	&	Wormley’s	System	Dynamics	an	Introduction

Impedance ! Across	Power	Variable
Through	Power	Variable Admittance ! Through	Power	Variable

Across	Power	Variable

Power !Through	Var.× Across	Var.

Technically,	“mechanical	impedance”	is	1/Z(s).	Therefore,	in	the	mechanical	domain,	we	must	refer	to	  
our	deMinition	of	Z(s)	as	“generalized	impedance,”	or	“mobility.”		This	convention	for	Z(s)	has	the		
beneMit	that	it	preserves	circuit	topology.⎨⎩ ⎧⎪ ⎪⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪



This	box	has	Inset	
Margin=6pt,	

Shadow=6px,	Blur=10px	
and	Opacity=50%

⎨
⎩

⎧⎪⎪
⎪⎪
⎨
⎩
⎧⎪
⎪ ⎨
⎩

⎧
⎪⎪
⎪⎪

⎪

⎪
⎨

⎩

⎧
⎪⎪
⎪⎪

⎪

⎪

⎪

⎪
⎨

⎩

⎧

⎪⎪
⎪⎪

⎪

⎪

⎪

⎪

⎪

⎪ ⎪

⎪

⎪

⎪

⎨

⎩

⎧

⎪⎪
⎪⎪

⎪

⎪

⎪

⎪

⎪

⎪ ⎪

⎪

⎨

⎩

⎧

⎪⎪
⎪⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

Kgage

Mfappl

K

B

x

⎨ ⎩⎧ ⎪⎪ ⎪ ⎪
⎨ ⎩⎧ ⎪ ⎪
⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪
⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪
⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪
⎪⎪ ⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪
⎪⎪ ⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

Standard 
Capacitor

Standard 
Resistor

Rf

R2

vo

+

–

C2

–

+

–
+

Rf

�3



Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.
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Electrical Fluid Thermal

Across Variable v, velocity ω, angular
velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate
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Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.
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Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.
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The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.
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Following slides apply to all 
domains but use symbols

from this domain

Reference:	Chapter	13	of	Rowell	&	Wormley’s	System	Dynamics	an	Introduction



What about the impedance/admittance of a connection of passive elements?
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Impedances Sum in Series

 6

V1Z1

Z2 V2

F1

F2
V

F

V = V1+V2

Z = V
F
=

V1+V2
F

=
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F
+
V2
F
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F = F1 = F2



admittances sum when they are in parallel

 7
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Y = F
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V
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V1 Y2
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Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical
Translational

Mechanical
Rotational

Electrical Fluid Thermal

Across Variable v, velocity ω, angular
velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate

Impedance Z(s)
Admittance

    
Y s

Z s
( )

( )
= 1     

Z s
V s
F s

( )
( )
( )

=
    
Z s

s
T s

( )
( )
( )

= Ω

    
Z s

V s
I s

( )
( )
( )

=
    
Z s

P s
Q s

( )
( )
( )

=
    
Z s

T s
Q s

( )
( )
( )

=

A-Type
mass, M:

    

1
Ms

inertia, J:

    

1
Js

capacitor, C

    

1
Cs

fluid capacitor, C

    

1
Cs

thermal capacitor, C

    

1
Cs

D-Type
damper, B

    

1
B

r. damper, B

    

1
B

resistor, R
  R

fluid resistor, R
  R

thermal resistor, R
  R

Im
p

ed
an

ce
   
Z

(s
)

T-Type
spring, K

  

s
K

r. spring,   Kr

  

s
Kr

inductor, L

  Ls

fluid inductor, L

  Ls
—

Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.
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Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.
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The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.
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Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical
Translational

Mechanical
Rotational

Electrical Fluid Thermal

Across Variable v, velocity ω, angular
velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate
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Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z
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Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.
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Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.

Z1

Z2

Z3

V2Vs

    
T s

V s
V s

Z
Z Z Zs

( )
( )
( )

= =
+ +

2 2

1 2 3

The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.
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Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.
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Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.
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Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.
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The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.
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1 2 3“across	variable	divider	formula”

“through	variable	divider	formula”
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By inspection of the diagram

V2(s)
Vin(s)

=
V2(s)

V2(s) +V1(s)
(1)

and

F1(s) = F2(s) (2)

Define the impedances Z1(s) and Z2(s) as

Z1(s) =
V1(s)
F1(s)

Z2(s) =
V2(s)
F2(s)

(3)

From (1), using (3),

V2(s)
Vin(s)

=
Z2(s)F2(s)

Z2(s)F2(s) + Z1(s)F1(s)
(4)

From (4), using (2),

V2(s)
Vin(s)

=
Z2(s)

Z2(s) + Z1(s)
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(4)

From (4), using (2),

V2(s)
Vin(s)

=
Z2(s)

Z2(s) + Z1(s)   

By inspection of the diagram

V2(s)
Vin(s)

=
V2(s)

V2(s) +V1(s)
(1)

and

F1(s) = F2(s) (2)

Define the impedances Z1(s) and Z2(s) as

Z1(s) =
V1(s)
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(3)
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From (4), using (2),

V2(s)
Vin(s)

=
Z2(s)

Z2(s) + Z1(s)

(Across Variable = v) 

“across	variable	divider	formula	using	impedances”

V1

V2

F1

F2

Vin

+

–

+

–

+

–

Any
M-K-B

Combination

Z1

Z2

Across Variable Divider 



Across Variable Divider 

   

By inspection of the diagram
X2(s)
Xin(s)

=
X2(s)

X2(s) + X1(s)
(1)

and
F1(s) = F2(s) (2)

Define the compliances C1(s) and C2(s) as

C1(s) =
X1(s)
F1(s)

C2(s) =
X2(s)
F2(s)

(3)

From (1), using (3),
X2(s)
Xin(s)

=
C2(s)F2(s)

C2(s)F2(s) + C1(s)F1(s)
(3)

From (4), using (2),
X2(s)
Xin(s)

=
C2(s)

C2(s) + C1(s)
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(Across Variable= x= v(λ)dλ∫ )

   

By inspection of the diagram
X2(s)
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=
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By inspection of the diagram
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and
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By inspection of the diagram
X2(s)
Xin(s)

=
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(1)

and
F1(s) = F2(s) (2)
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From (1), using (3),
X2(s)
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=
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(4)

From (4), using (2),
X2(s)
Xin(s)
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+

−

+

−

+

−

“across	variable	divider	formula	using	compliances”

F1

F2
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Through Variable Divider 

   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
V1(s) = V2(s) (2)

Define the admittances Y1(s) and Y2(s) as

Y1(s) =
F1(s)
V1(s)

Y2(s) =
F2(s)
V2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
Y2(s)V2(s)

Y2(s)V2(s) + Y1(s)V1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
Y2(s)

Y2(s) + Y1(s)
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Y1 Y2

(Across Variable = v) 

“through	variable	divider	formula	using	admittances”

Fin

F1 F2
+

−
V1 V2

+

−

   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
V1(s) = V2(s) (2)

Define the admittances Y1(s) and Y2(s) as

Y1(s) =
F1(s)
V1(s)

Y2(s) =
F2(s)
V2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
Y2(s)V2(s)

Y2(s)V2(s) + Y1(s)V1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
Y2(s)

Y2(s) + Y1(s)   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
V1(s) = V2(s) (2)

Define the admittances Y1(s) and Y2(s) as

Y1(s) =
F1(s)
V1(s)

Y2(s) =
F2(s)
V2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
Y2(s)V2(s)

Y2(s)V2(s) + Y1(s)V1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
Y2(s)
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Through Variable Divider 
(Across Variable= x= v(λ)dλ∫ )

   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
X1(s) = X2(s) (2)

Define the stiffnesses S1(s) and S2(s) as

S1(s) =
F1(s)
X1(s)

S2(s) =
F2(s)
X2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
S2(s)X2(s)

S2(s)X2(s) + S1(s)X1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
S2(s)

S2(s) + S1(s)
 12

S1 S2

   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
X1(s) = X2(s) (2)

Define the stiffnesses S1(s) and S2(s) as

S1(s) =
F1(s)
X1(s)

S2(s) =
F2(s)
X2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
S2(s)X2(s)

S2(s)X2(s) + S1(s)X1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
S2(s)

S2(s) + S1(s)   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
X1(s) = X2(s) (2)

Define the stiffnesses S1(s) and S2(s) as

S1(s) =
F1(s)
X1(s)

S2(s) =
F2(s)
X2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
S2(s)X2(s)

S2(s)X2(s) + S1(s)X1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
S2(s)

S2(s) + S1(s)   

By inspection of the diagram
F2(s)
Fin(s)

=
F2(s)

F2(s) + F1(s)
(1)

and
X1(s) = X2(s) (2)

Define the stiffnesses S1(s) and S2(s) as

S1(s) =
F1(s)
X1(s)

S2(s) =
F2(s)
X2(s)

(3)

From (1), using (3),
F2(s)
Fin(s)

=
S2(s)X2(s)

S2(s)X2(s) + S1(s)X1(s)
(4)

From (4), using (2),
F2(s)
Fin(s)

=
S2(s)

S2(s) + S1(s)
“through	variable	divider	formula	using	stiffnesses”

Fin

F1 F2
+

−
X1 X2

+

−
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Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical
Translational

Mechanical
Rotational

Electrical Fluid Thermal

Across Variable v, velocity ω, angular
velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate

Impedance Z(s)
Admittance

    
Y s

Z s
( )

( )
= 1     

Z s
V s
F s

( )
( )
( )

=
    
Z s

s
T s

( )
( )
( )

= Ω

    
Z s

V s
I s

( )
( )
( )

=
    
Z s

P s
Q s

( )
( )
( )

=
    
Z s

T s
Q s

( )
( )
( )

=

A-Type
mass, M:

    

1
Ms

inertia, J:

    

1
Js

capacitor, C

    

1
Cs

fluid capacitor, C

    

1
Cs

thermal capacitor, C

    

1
Cs

D-Type
damper, B

    

1
B

r. damper, B

    

1
B

resistor, R
  R

fluid resistor, R
  R

thermal resistor, R
  R

Im
p

ed
an

ce
   
Z

(s
)

T-Type
spring, K

  

s
K

r. spring,   Kr

  

s
Kr

inductor, L

  Ls

fluid inductor, L

  Ls
—

Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.

Y1 Y2 Y1+Y2

    

Y Y Y

Z
Y

Z Z

Z Z
Z Z

= +

= =
+

=
+

1 2

1 2

1 2

1 2

1 1
1 1

Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.

Z1

Z2

Z3

V2Vs

    
T s

V s
V s

Z
Z Z Zs

( )
( )
( )

= =
+ +

2 2

1 2 3

The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.

Y1 F3Fs Y2 Y3

    
T s

F s
F s

Y
Y Y Ys

( )
( )
( )

= =
+ +

2 2

1 2 3

!

!
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The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical
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velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate

Impedance Z(s)
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=
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D-Type
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(s
)

T-Type
spring, K
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r. spring,   Kr

  

s
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inductor, L

  Ls

fluid inductor, L

  Ls
—

Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.

Y1 Y2 Y1+Y2

    

Y Y Y

Z
Y

Z Z

Z Z
Z Z

= +

= =
+

=
+

1 2

1 2

1 2

1 2

1 1
1 1

Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.

Z1

Z2

Z3

V2Vs

    
T s

V s
V s

Z
Z Z Zs

( )
( )
( )

= =
+ +

2 2

1 2 3

The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.

Y1 F3Fs Y2 Y3

    
T s

F s
F s

Y
Y Y Ys

( )
( )
( )

= =
+ +

2 2

1 2 3

Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical
Translational

Mechanical
Rotational

Electrical Fluid Thermal

Across Variable v, velocity ω, angular
velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate

Impedance Z(s)
Admittance

    
Y s
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( )

( )
= 1     

Z s
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( )
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( )
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( )

=
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( )
( )

=
    
Z s

T s
Q s

( )
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( )

=

A-Type
mass, M:

    

1
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inertia, J:
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capacitor, C
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Cs

fluid capacitor, C

    

1
Cs

thermal capacitor, C
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D-Type
damper, B

    

1
B

r. damper, B
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  R

thermal resistor, R
  R
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p
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Z

(s
)

T-Type
spring, K
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r. spring,   Kr

  

s
Kr

inductor, L

  Ls

fluid inductor, L

  Ls
—

Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.

Y1 Y2 Y1+Y2

    

Y Y Y

Z
Y

Z Z

Z Z
Z Z

= +

= =
+

=
+

1 2

1 2

1 2

1 2

1 1
1 1

Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.

Z1

Z2

Z3

V2Vs

    
T s

V s
V s

Z
Z Z Zs

( )
( )
( )

= =
+ +

2 2

1 2 3

The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.

Y1 F3Fs Y2 Y3

    
T s

F s
F s

Y
Y Y Ys

( )
( )
( )

= =
+ +

2 2

1 2 3

Y = 1
Z
=

1
Z1+Z2

=
Y1Y2
Y1+Y2

Z⇒C

ϒ⇒ S

displacements/rotations: (compliance)
(stiffness)



Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

Thevenin’s Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.

Ze
Ve

Linear
Network

Linear
Network

Ve

Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=
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Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

Thevenin’s Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.

Ze
Ve

Linear
Network

Linear
Network

Ve

Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=

has	mathematically	identical	behavior

has	mathematically	identical	behavior



   Ze =  impedance of the network when the voltage sources are replaced by short circuits
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v1

R1

R3

R2

R4

v2

R5 ve ⇔ ve

Ze

+
–

Thevenin
Equivalent

(seen at the output port)

^

Thevenin Equivalent Example

   ve =  voltage that appears across the open-circuited terminals of the network

R1

R3

R2

R4

R5

   

Ze =

R5 R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R5 + R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⇒
Combine 

Series & Parallel
Elements



v1

R1

R3

R2

R4

v2

R5 ve ⇔ ve

Ze

+
–

Thevenin
Equivalent

   ve =  voltage that appears across the open-circuited terminals of the network
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i1 i3

i2

   

 v1− i1R1− i2R3− i1R2 = 0    
i2R3− i3R4− i3R5−v2 = 0

i3R5−ve = 0

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

  Loop Equations

⎨

⎩

⎧
⎪⎪

⎪⎪

⎪

⎪

4 independent equations in the
    unknowns i1, i2, i3 and ve

Thevenin Equivalent Example

      i1 = i2 + i3      Node Equation
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ve =

v1R3−v2(R1 + R2 + R3)⎡⎣ ⎤⎦R5
(R1 + R2)R3 + (R1 + R2 + R3)(R4 + R5)⇒

   

 v1− i1R1− i2R3− i1R2 = 0    
i2R3− i3R4− i3R5−v2 = 0

i3R5−ve = 0

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

  Loop Equations

   i1 = i2 + i3      Node Equation



v1

R1

R3

R2

R4

v2

R5

   Ze =  impedance of the network when the voltage sources are replaced by short circuits
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⇔ ve

Ze

+
–

Thevenin
Equivalent

(seen at the output port)

^

Thevenin Equivalent Example

   ve =  voltage that appears across the open-circuited terminals of the network

   
ve =

v1R3−v2(R1 + R2 + R3)⎡⎣ ⎤⎦R5
(R1 + R2)R3 + (R1 + R2 + R3)(R4 + R5)

   

Ze =

R5 R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R5 + R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(Summary)



Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

Thevenin’s Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.

Ze
Ve

Linear
Network

Linear
Network

Ve

Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=
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Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

Thevenin’s Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.
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Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=

!
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v1

R1

R3

R2

R4

v2

R5 ⇔

Norton Equivalent Example

Norton
Equivalent

Zeie

   Ze =  impedance of the network when the voltage sources are replaced by short circuits
(seen at the output port)

^   ie =  current that would flow through the short-circuited terminals of the network

   

Ze =

R5 R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R5 + R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

ie =
ve
Ze

=
v1R3−v2(R1 + R2 + R3)⎡⎣ ⎤⎦R5

(R1 + R2)R3 + (R1 + R2 + R3)(R4 + R5)
÷

R5 R4 +
R3(R1 + R2)

(R3 + R1 + R2)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R5 + R4 +
R3(R1 + R2)

(R3 + R1 + R2)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(Summary)



Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

Thevenin’s Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.

Ze
Ve

Linear
Network

Linear
Network

Ve

Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=
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Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.
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across variable source  Ve  in series with an equivalent
impedance   Ze , where
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equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.
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Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
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Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.
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e
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