Impedance Review

ME 473
Professor Sawyer B. Fuller

Technically, "mechanical impedance" is $1 / Z(s)$. Therefore, in the mechanical domain, we must refer to our definition of $Z(s)$ as "generalized impedance," or "mobility." This convention for $Z(s)$ has the benefit that it preserves circuit topology.
Generalized impedances are an extension of the concept of electrical impedances to systems of other domains. The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

		Mechanical Translational	Mechanical Rotational	Electrical	Fluid	Thermal
Across Variable		v, velocity	ω, angular velocity	v, voltage	p, pressure	T, temperature
Through Variable		f, force	T, torque	i, current	q, volumetric flow	q, heat flow rate
Impedance $Z(s)$ Admittance$Y(s)=\frac{1}{Z(s)}$		$Z(s)=\frac{V(s)}{F(s)}$	$Z(s)=\frac{\Omega(s)}{T(s)}$	$Z(s)=\frac{V(s)}{I(s)}$	$Z(s)=\frac{P(s)}{Q(s)}$	$Z(s)=\frac{T(s)}{Q(s)}$
	A-Type	$\begin{gathered} \hline \text { mass, } M \text { : } \\ \frac{1}{M s} \end{gathered}$	inertia, J: $\frac{1}{J s}$	$\begin{gathered} \hline \hline \text { capacitor, } \mathrm{C} \\ \frac{1}{\mathrm{Cs}} \end{gathered}$	fluid capacitor, C $\frac{1}{C s}$	thermal capacitor, C $\frac{1}{C s}$
	D-Type	$\begin{gathered} \text { damper, } B \\ \frac{1}{B} \\ \hline \end{gathered}$	$\begin{gathered} \text { r. damper, } B \\ \frac{1}{B} \\ \hline \end{gathered}$	$\begin{gathered} \text { resistor, } R \\ R \end{gathered}$	$\begin{gathered} \hline \text { fluid resistor, } R \\ R \end{gathered}$	thermal resistor, R R
	T-Type	$\begin{aligned} & \text { spring, } K \\ & \frac{s}{K} \end{aligned}$	$\begin{gathered} \text { r. spring, } K_{r} \\ \frac{s}{K_{r}} \\ \hline \end{gathered}$	inductor, L Ls	fluid inductor, L Ls	-

$$
\text { Impedance } \triangleq \frac{\text { Across Power Variable }}{\text { Through Power Variable }}
$$

Admittance $\triangleq \frac{\text { Through Power Variable }}{\text { Across Power Variable }}$

Reference: Chapter 13 of Rowell \& Wormley's System Dynamics an Introduction
Power \triangleq Through Var. \times Across Var.

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains. The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

		Mechanical Translational	Mechanical Rotational	Electrical	Fluid	Thermal
Across Variable		v, velocity	ω, angular velocity	v, voltage	p, pressure	T, temperature
Through Variable		f, force	T, torque	i, current	q, volumetric flow	q, heat flow rate
Impedance $Z(s)$ Admittance$Y(s)=\frac{1}{Z(s)}$		$Z(s)=\frac{V(s)}{F(s)}$	$\mathrm{Z}(\mathrm{s})=\frac{\Omega(s)}{T(s)}$	$Z(s)=\frac{V(s)}{I(s)}$	$Z(s)=\frac{P(s)}{Q(s)}$	$Z(s)=\frac{T(s)}{Q(s)}$
	A-Type	mass, M : $\frac{1}{M s}$	inertia, J : $\frac{1}{J s}$	$\begin{gathered} \hline \text { capacitor, } \mathrm{C} \\ \frac{1}{\mathrm{Cs}} \\ \hline \end{gathered}$	$\begin{gathered} \text { fluid capacitor, } \mathrm{C} \\ \frac{1}{\mathrm{Cs}} \end{gathered}$	$\begin{gathered} \hline \text { thermal capacitor, } \mathrm{C} \\ \frac{1}{\mathrm{Cs}} \end{gathered}$
	D-Type	$\begin{gathered} \text { damper, } B \\ \frac{1}{B} \\ \hline \end{gathered}$	$\begin{gathered} \text { r. damper, } B \\ \frac{1}{B} \\ \hline \end{gathered}$	$\begin{gathered} \text { resistor, } R \\ R \end{gathered}$	fluid resistor, R R	thermal resistor, R R
	T-Type	$\begin{gathered} \text { spring, } K \\ \frac{s}{K} \end{gathered}$	$\begin{gathered} \text { r. spring, } K_{r} \\ \frac{s}{K_{r}} \\ \hline \end{gathered}$	inductor, L Ls	fluid inductor, L Ls	-

Following slides apply to all domains but use symbols from this domain

What about the impedance/admittance of a connection of passive elements?

Impedances Sum in Series

$$
\begin{aligned}
& V=V_{1}+V_{2} \\
& F=F_{1}=F_{2} \\
& Z=\frac{V}{F}=\frac{V_{1}+V_{2}}{F}=\frac{V_{1}}{F}+\frac{V_{2}}{F}=\frac{V_{1}}{F_{1}}+\frac{V_{2}}{F_{2}}=Z_{1}+Z_{2}
\end{aligned}
$$

admittances sum when they are in parallel

$$
\begin{aligned}
& F=F_{1}+F_{2} \\
& V=V_{1}=V_{2} \\
& Y=\frac{F}{V}=\frac{F_{1}+F_{2}}{V}=\frac{F_{1}}{V}+\frac{F_{2}}{V}=\frac{F_{1}}{V_{1}}+\frac{F_{2}}{V_{2}}=Y_{1}+Y_{2}
\end{aligned}
$$

Series and parallel combinations of impedances and admittances can be combined. In the following V and F represent the across and through variables respectively of any physical domain.

Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider

$($ Across Variable $=v)$

By inspection of the diagram

$$
\begin{equation*}
\frac{V_{2}(s)}{V_{i n}(s)}=\frac{V_{2}(s)}{V_{2}(s)+V_{1}(s)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{1}(s)=F_{2}(s) \tag{2}
\end{equation*}
$$

Define the impedances $Z_{1}(s)$ and $Z_{2}(s)$ as

$$
\begin{equation*}
Z_{1}(s)=\frac{V_{1}(s)}{F_{1}(s)} \quad Z_{2}(s)=\frac{V_{2}(s)}{F_{2}(s)} \tag{3}
\end{equation*}
$$

From (1), using (3),

$$
\begin{equation*}
\frac{V_{2}(s)}{V_{i n}(s)}=\frac{Z_{2}(s) F_{2}(s)}{Z_{2}(s) F_{2}(s)+Z_{1}(s) F_{1}(s)} \tag{4}
\end{equation*}
$$

From (4), using (2),

$$
\frac{V_{2}(s)}{V_{i n}(s)}=\frac{Z_{2}(s)}{Z_{2}(s)+Z_{1}(s)} \quad \text { "across variable divider formula using impedances" }
$$

Across Variable Divider
 $\left(\right.$ Across Variable $\left.=x=\int v(\lambda) d \lambda\right)$

By inspection of the diagram

$$
\begin{equation*}
\frac{X_{2}(s)}{X_{i n}(s)}=\frac{X_{2}(s)}{X_{2}(s)+X_{1}(s)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{1}(s)=F_{2}(s) \tag{2}
\end{equation*}
$$

Define the compliances $C_{1}(s)$ and $C_{2}(s)$ as

$$
\begin{equation*}
C_{1}(s)=\frac{X_{1}(s)}{F_{1}(s)} \quad C_{2}(s)=\frac{X_{2}(s)}{F_{2}(s)} \tag{3}
\end{equation*}
$$

From (1), using (3),

$$
\begin{equation*}
\frac{X_{2}(s)}{X_{i n}(s)}=\frac{C_{2}(s) F_{2}(s)}{C_{2}(s) F_{2}(s)+C_{1}(s) F_{1}(s)} \tag{4}
\end{equation*}
$$

From (4), using (2),

$$
\frac{X_{2}(s)}{X_{i n}(s)}=\frac{C_{2}(s)}{C_{2}(s)+C_{1}(s)}
$$

"across variable divider formula using compliances"

Through Variable Divider

$($ Across Variable $=v)$
By inspection of the diagram

$$
\begin{equation*}
\frac{F_{2}(s)}{F_{i n}(s)}=\frac{F_{2}(s)}{F_{2}(s)+F_{1}(s)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{1}(s)=V_{2}(s) \tag{2}
\end{equation*}
$$

Define the admittances $Y_{1}(s)$ and $Y_{2}(s)$ as

$$
\begin{equation*}
Y_{1}(s)=\frac{F_{1}(s)}{V_{1}(s)} \quad Y_{2}(s)=\frac{F_{2}(s)}{V_{2}(s)} \tag{3}
\end{equation*}
$$

From (1), using (3),

$$
\begin{equation*}
\frac{F_{2}(s)}{F_{i n}(s)}=\frac{Y_{2}(s) V_{2}(s)}{Y_{2}(s) V_{2}(s)+Y_{1}(s) V_{1}(s)} \tag{4}
\end{equation*}
$$

From (4), using (2),

$$
\frac{F_{2}(s)}{F_{i n}(s)}=\frac{Y_{2}(s)}{Y_{2}(s)+Y_{1}(s)}
$$

Through Variable Divider

$\left(\right.$ Across Variable $\left.=x=\int v(\lambda) d \lambda\right)$

By inspection of the diagram

$$
\frac{F_{2}(s)}{F_{i n}(s)}=\frac{F_{2}(s)}{F_{2}(s)+F_{1}(s)}
$$

and

$$
\begin{equation*}
X_{1}(s)=X_{2}(s) \tag{2}
\end{equation*}
$$

Define the stiffnesses $S_{1}(s)$ and $S_{2}(s)$ as

$$
\begin{equation*}
S_{1}(s)=\frac{F_{1}(s)}{X_{1}(s)} \quad S_{2}(s)=\frac{F_{2}(s)}{X_{2}(s)} \tag{3}
\end{equation*}
$$

From (1), using (3),

$$
\begin{equation*}
\frac{F_{2}(s)}{F_{i n}(s)}=\frac{S_{2}(s) X_{2}(s)}{S_{2}(s) X_{2}(s)+S_{1}(s) X_{1}(s)} \tag{4}
\end{equation*}
$$

From (4), using (2),

$$
\frac{F_{2}(s)}{F_{i n}(s)}=\frac{S_{2}(s)}{S_{2}(s)+S_{1}(s)}
$$

"through variable divider formula using stiffnesses"

Series and parallel combinations of impedances and admittances can be combined. In the following V and F represent the across and through variables respectively of any physical domain.

Parallel Combination	
Elements sharing a common across variable are in parallel. The admittance of elements connected in parallel is the sum of the individual admittances.	$\begin{aligned} & Y=Y_{1}+Y_{2} \\ & Z=\frac{1}{Y}=\frac{1}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \end{aligned}$
displacements/rotations: $Z \Rightarrow C \quad$ (compliance) mittance properties. $\Upsilon \Rightarrow S$ (stiffness) 	

Across Variable Divider	
The complex amplitude of the across variable across a set of elements in series is divided among the elements in proportion their impedances.	$T(s)=\frac{V_{2}(s)}{V_{s}(s)}=\frac{Z_{2}}{Z_{1}+Z_{2}+Z_{3}}$

Thevenin's Theorem

A linear two-terminal network is equivalent to an across variable source V_{e} in series with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$V_{e}=$ an across variable source equal to the across variable that would appear across the open circuit terminals of the network.

has mathematically identical behavior

Norton's Theorem

A linear two-terminal network isequivalent to a through variable source F_{e} in parallel with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$F_{e}=\mathrm{a}$ through variable source equal to the through variable that would flow through the short circuited terminals of the network.

Thevenin Equivalent Example

$v_{e}=$ voltage that appears across the open-circuited terminals of the network
$Z_{e}=$ impedance ${ }^{\vee}$ of the network when the voltage sources are replaced by short circuits (seen at the output port)

$\underset{\substack{\text { Combine } \\ \text { ries \& Parallel }}}{\Rightarrow} Z_{e}=\frac{R_{5}\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}{R_{5}+\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}$
Elements

Thevenin Equivalent Example

$v_{e}=$ voltage that appears across the open-circuited terminals of the network

$$
\left.\begin{array}{c}
v_{1}-i_{1} R_{1}-i_{2} R_{3}-i_{1} R_{2}=0 \\
i_{2} R_{3}-i_{3} R_{4}-i_{3} R_{5}-v_{2}=0 \\
i_{3} R_{5}-v_{e}=0
\end{array}\right\} \text { Loop Equations }
$$

Mathematica solution of simultaneous equations :

$$
\begin{aligned}
& \ln [3]= \\
& \text { Eliminate[}\left\{v_{1}-i_{1} * R_{1}-i_{2} * R_{3}-i_{1} * R_{2}=0, i_{2} * R_{3}-i_{3} * R_{4}-i_{3} * R_{5}-v_{2}=0\right. \text {, } \\
& \left.\left.i_{3} * R_{5}-v_{e}=0, i_{1}=i_{2}+i_{3}\right\},\left\{i_{1}, i_{2}, i_{3}\right\}\right] \\
& \text { Out [3] }=R_{1} R_{5} v_{2}+R_{2} R_{5} v_{2}+R_{3} R_{5} v_{2}+R_{1} R_{3} v_{e}+R_{2} R_{3} v_{e}+ \\
& R_{1} R_{4} v_{e}+R_{2} R_{4} v_{e}+R_{3} R_{4} v_{e}+R_{1} R_{5} v_{e}+R_{2} R_{5} v_{e}+R_{3} R_{5} v_{e}=R_{3} R_{5} v_{1} \\
& \left.\ln [4]=\text { Solve [\%, } \mathrm{v}_{\mathrm{e}}\right] \\
& \text { Out[4] }=\left\{\left\{v_{e} \rightarrow \frac{R_{3} R_{5} v_{1}-R_{1} R_{5} v_{2}-R_{2} R_{5} v_{2}-R_{3} R_{5} v_{2}}{R_{1}+R_{2} R_{3}+R_{1} R_{4}+R_{2} R_{4}+R_{3} R_{4}+R_{1} R_{5}+R_{2} R_{5}+R_{3} R_{5}}\right\}\right\} \\
& \Rightarrow \quad v_{e}=\frac{\left[v_{1} R_{3}-v_{2}\left(R_{1}+R_{2}+R_{3}\right)\right] R_{5}}{\left(R_{1}+R_{2}\right) R_{3}+\left(R_{1}+R_{2}+R_{3}\right)\left(R_{4}+R_{5}\right)}
\end{aligned}
$$

Thevenin Equivalent Example

(Summary)

$v_{e}=$ voltage that appears across the open-circuited terminals of the network
$Z_{e}=$ impedance ${ }^{V}$ of the network when the voltage sources are replaced by short circuits (seen at the output port)

$$
v_{e}=\frac{\left[v_{1} R_{3}-v_{2}\left(R_{1}+R_{2}+R_{3}\right)\right] R_{5}}{\left(R_{1}+R_{2}\right) R_{3}+\left(R_{1}+R_{2}+R_{3}\right)\left(R_{4}+R_{5}\right)}
$$

$$
Z_{e}=\frac{R_{5}\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}{R_{5}+\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}
$$

Thevenin's Theorem

A linear two-terminal network is equivalent to an across variable source V_{e} in series with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$V_{e}=$ an across variable source equal to the across variable that would appear across the open circuit terminals of the network.

Norton's Theorem

A linear two-terminal network is equivalent to a through variable source F_{e} in parallel with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$F_{e}=$ a through variable source equal to the through variable that would flow through the short circuited terminals of the network.

Norton Equivalent Example

(Summary)

Norton
Equivalent
$i_{e}=$ current that would flow through the short-circuited terminals of the network
$Z_{e}=$ impedance ${ }^{\vee}$ of the network when the voltage sources are replaced by short circuits (seen at the output port)

$$
\begin{gathered}
Z_{e}=\frac{R_{5}\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}{R_{5}+\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]} \\
i_{e}=\frac{v_{e}}{Z_{e}}=\frac{\left[v_{1} R_{3}-v_{2}\left(R_{1}+R_{2}+R_{3}\right)\right] R_{5}}{\left(R_{1}+R_{2}\right) R_{3}+\left(R_{1}+R_{2}+R_{3}\right)\left(R_{4}+R_{5}\right)} \div \frac{R_{5}\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}{R_{5}+\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}
\end{gathered}
$$

Thevenin's Theorem

A linear two-terminal network is equivalent to an across variable source V_{e} in series with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$V_{e}=$ an across variable source equal to the across variable that would appear across the open circuit terminals of the network.

Norton's Theorem

A linear two-terminal network is equivalent to a through variable source F_{e} in parallel with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$F_{e}=$ a through variable source equal to the through variable that would flow through the short circuited terminals of the network.

