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Technically, “mechanical impedance” is 1/Z(s). Therefore, in the mechanical domain, we must refer to
our definition of Z(s) as “generalized impedance,” or “mobility.” This convention for Z(s) has the

benefit that it preserves circuit topology.
“

Generalized impedances are an extension of the concep

r

A\
t of electrical impedances to systems of other domains.

The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical Mechanical Electrical Fluid Thermal
Translational Rotational
Across Variable v, velocity , angular v, voltage p, pressure T, temperature
velocity
Through Variable £, force T, torque i current q, Vofllumetric g, heat flow rate
oW
Impedance Z(s)
Admittance
1
Y(s)=——
(s)=— ®
mass, M: inertia, J: capacitor, C fluid capacitor, C | thermal capacitor, C

| ATy 1 1 1 1 1

‘[3’ Ms Js Cs Cs Cs

o damper, B r. damper, B resistor, R fluid resistor, R | thermal resistor, R

% D-Type 1 1 R R R

S B B

g-' spring, K r. spring, K, inductor, L fluid inductor, L

= T-Type S s Ls Ls —

K K,

Impedance

~ Across Power Variable

Through Power Variable

Admittance =

» Through Power Variable

Across Power Variable

Reference: Chapter 13 of Rowell & Wormley’s System Dynamics an Introduction
P g 4 Power = Through Var. x Across Var.
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Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.

The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical Mechanical Electrical Fluid Thermal
Translational Rotational
Across Variable v, velocity , angular v, voltage p, pressure T, temperature
velocity
Through Variable £, force T, torque i current q, Vofllumetric g, heat flow rate
OW
Impedance Z(s)
Adlr)nittance Z(s) = &S) Z(s) = £(s) Z(s) = &S) Z(s) = is) Z(s) = E
Y(s) = 1 F(s) T(s) I(s) Q(s) Q(s)
Z(s)
mass, M: inertia, J: capacitor, C fluid capacitor, C | thermal capacitor, C
_ A-Type 1 1 1 1 1
‘[3’ Ms Js Cs Cs Cs
o damper, B r. damper, B resistor, R fluid resistor, R thermal resistor, R
% D-Type 1 1 R R R
S B B
o spring, K r. spring, K, inductor, L fluid inductor, L
'g I-Type S S Ls Ls —
K K,

Following slides apply to all

domains but use symbols
from this domain

Reference: Chapter 13 of Rowell & Wormley’s System Dynamics an Introduction




What about the impedance/admittance of a connection of passive elements?



Impedances Sum 1n Series

F|
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admittances sum when they are in parallel
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Series and parallel combinations of impedances and admittances can be combined. In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination
Elements sharing a Elements sharing a common
common through variable 7 7 across variable are in parallel. % T
are in series. y 1 2 ®
{ e admittance of elements Y| Yo || VatYs
The impedance of elements connected in parallel is the
connected in series is the o— Z —eo sum of the individual
sum of the individual admittances.
impedances. Y=Y1+Y,
L=2L1+2y z=L_-_1 _ 4%
y 1 1 7+7,
21 2o
211 hh
Z Z,+Z, Y +Y,

Simple transfer functions can be determined from impedance /admittance properties.

Across Variable Divider Through Variable Divider
The complex amplitude of 1 The complex amplitude of
the across variable across a 7 the through variable through
set of elements in series is ! a set of elements in parallel is
divided among the —* divided among the elements | | |
elements in proportion V. <> Z, | V, in proportion their F Yo || Ya || Y5 |VEs
their impedances. —e admittances. | | |

23 1RO __ %
T “across variable divider formula” F(s) Yi+Y,+Ys
T(s) Vo(s) _ ) “through variable divider formula”
VS (S) Z1 + Z2 + Z3




Across Variable Divider
(Across Variable = v)

1\??_7]3. By inspection of the diagram
Comb1|nat10n VZ(S) B V2 (S) (1)
Fl¢_1+ V. (s) V,(s)+V,(s)
+ Zl_‘rfl_ and
Vin <y> 1, Fl(S) = Fz(S) (2)
- |l Vo
'
i Define the impedances Z,(s) and Z,(s) as
_ Vl(s) . VQ(S)
Z,(s) = E (5) Z,(s) = EG) (3)
From (1), using (3),
Vo(s) _ Z,(s)E,(s) (4)
V. (s) Z,(s)F,(s)+ Z,(s)F(s)
From (4), using (2),
Vols) _ Zy(s)

“across variable divider formula using impedances”

V. (s) Z,(s)+Z,(s)

m
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Across Variable Divider
(Across Variable = x = f v(A\)d))

MAf R By inspection of the diagram
Combilnation Xz(s) _ Xz(s) (1)
R X, (s)  X,(s)+ X,(s)
I
ol ox and
| <> — 1~ F(s)=Fy(s) (2)
\ 4 —1 N
Gl Xo
P - Define the compliances C,(s) and C,(s) as
X (s) X, (s)
Cy(s)=- C,(s)==2 (3)
B E(s) 27 Ey(s)
From (1), using (3),
X,(s) C,(s)E,(s) (4)

X, (s) B C,(s)F,(s)+ C,(s)E(s)

From (4), using (2),
X,(s) C,(s)

= “across variable divider formula using compliances”
X,,(5)  G6)+G6) s




Through Variable Divider

(Across Variable = v)

By inspection of the diagram

F,(s) _ E(s) (1)
F, (s) FE(s)+F(s)
N VA N VB and
Fin CAD Kl Y1 ‘iz Y> Vl(S):VZ(S) (2)
Define the admittances Y;(s) and Y,(s) as
_ E(s) _ E(s)
Y,(s)= v G) Y, (s) = V. (5) (3)
From (1), using (3),
F,(s) Y, (5)V,(s) (4)

F, (s)  Y,(s)V,(s)+ Y, (s)V;(s)

From (4), using (2),

E,(s) _ Y,(s)
F (s) Y,(s)+Y(s)

“through variable divider formula using admittances”




Through Variable Divider
(Across Variable = x = f v(N)d)\)

By inspection of the diagram

F(s) _ E(s) 1)
. VA . VF F. (s) FE,(s)+F(s)
Fin CAD {1 S1 )iz \Y) and
Xl(S): Xz(s) (2)
Define the stiffnesses S;(s) and S,(s) as
_ Fl(s) . FQ(S)
S,(s) = X,(5) S,(s) = X, 05) (3)
From (1), using (3),
F,(s) _ 5,(s)X;(s) (4)
E (s) S,(5)X,(s)+ 5;(s)X(s)
From (4), using (2),
5(5) = 52(5) “through variable divider formula using stiffnesses”
E(s) S,(5)+S,(s) 5 5
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Series and parallel combinations of impedances and admittances can be combined. In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination

Parallel Combination

Elements sharing a

Elements sharing a common

common through variable 7 7 across variable are in parallel. %
are in series. ¢ < 2 @
il e admittance of elements Yi[| Y2 || Vit),
The impedance of elements connected in parallel is the
connected in series is the o —® sum of the individual I l
sum of the individual admittances.
impedances. Y=Y1+Y,
Z=71+27, s 1 1 412
y 1 1 7+7,
21 2
11 vy,

Z Z+Z, Y +Y,

displacements/rotations:

Simple transfer functions can be determined from impedance /admittance properties.

Across Variable Divider

Through Variable Divider

Z=C (compliance)

T=5 (stiffness)

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.

T(s)

_Vals) Zy

CV(s) Zy+Zy+7Z4

The complex amplitude of
the through variable through
a set of elements in parallel is

ivided among the elements
in proportion their
admittances.

4

=

Y,

Ys

T(s)=

F(s) _

Yy

v

FS(S) B Yl +Y2 +Y3




r— has mathematically identical behavior

Thevenin’s Theorem

A linear two-terminal network is@uivale@to an

across variable source V, in series with an equivalent Linear —®
impedance Z,, where Network| ¢
Z, = the impedance of the network with all sources set v

equal to zero, and

q Z L o
: Linear [ ®
V, = an across variable source equal to the across 174 v,
. . ¢ Network| o
variable that would appear across the open circuit o
terminals of the network.
f- has mathematically identical behavior

Norton’s Theorem .|
A linear two-terminal network isequivalent)to a
through variable source F, in parallel with an equivalent Linear ™—®
impedance Z,, where Network| ¢
Z, = the impedance of the network with all sources set v

equal to zero, and | ¢

F <> 7 Linear | J/ r

F, = a through variable source equal to the through ¢ ¢ Network| ¢

variable that would flow through the short °

circuited terminals of the network.




Thevenin Equivalent Example

R1 R4
A 2
0 == R3 % % Rs v p— Ve <_>
A |
R L ) Thevenin )
2 02 .
Equivalent

v, = voltage that appears across the open-circuited terminals of the network

Z, = impedance’of the network when the voltage sources are replaced by short circuits
(seen at the output port)

Rq | /\1/14/\/ | )

Ry(R; +R,)
Rs R4+(R3—|—R1 TR,)
R3 Rs — 7, =
Combine R.+|R, + R;(R; +R;)
. 5 4
Series & Parallel (R; +R; +R,)

% ® Elements



Thevenin Equivalent Example

Thevenin
Equivalent

v, = voltage that appears across the open-circuited terminals of the network

v, — iR, —i,Ry —i;R, =0
i,Ry — 3R, —isRs — 0, =0

3R —v, =0

- Loop Equations

I, =1, +1; Node Equation

-

4 independent equations in the
unknowns 11, i3, i3 and v,



v, —iR, — iRy —i;R, =0

1, Ry —i,R, —i3Rs —v,=0  Loop Equations

3R —v, =0

1, =1,+1; Node Equation

Mathematica solution of simultaneous equations:

In[3]:=
Eliminate[{wvy; - i; +#R); = ig#« Ry =iy «Ry =0, i3 #«#Ry =i #«R; - i3#«Rg =wy =0,
iz wRg =wg == 0, 1y == i3 + 13}, {iy, i3, 13}]

Oufdl= Ry Rg vz + Rz Rg v « Ry Rg vz + Ry Ry v + Ry Ry v +
R]_R.]'h".,-._. FR:R.;F.,-._. FR].R.;F.,-._. FR]_RE.'I-";._. FRERE.F.E FR].RE.'U'.;._. --R],RE.'U’]_

nf4)= Solve[%, v.]

BR; R vy =Ry Rg vz =Ry Rg vy = Ry By vy

Outfd]= [{‘lfﬂ » kb
By R; +R;R; +R; Ry +R; Ry + Ri Ry + Ry Rs + Rz Rg + R3 Rg /-

o 0,Ry —0,(R; + R, + Ry)|R;
© (R +R)R;+(R; +R, +R3)(R, +R5)

—



Thevenin Equivalent Example

(Summary)
Rq Ry
R — 71—
U1 —— R3 % % Rs <~ Ve C__D
—/VM , H ° °
R Thevenin
2 02 :
Equivalent
v, = voltage that appears across the open-circuited terminals of the network
/ =

impedance’of the network when the voltage sources are replaced by short circuits
(seen at the output port)

R, + R,(R, +R,)
R o Rs(Ri+R,)
* " (Ry+R,+R,)

R
© (R +Ry)R; +(Ry + Ry +R3)(R, +R5) B

Rs +




Thevenin’s Theorem

A linear two-terminal network is equivalent to an

across variable source V, in series with an equivalent Linear
impedance Z,, where Network
Z, = the impedance of the network with all sources set v
equal to zero, and 7
e
: Li —®
V, = an across variable source equal to the across 174 mneat v,
. . ¢ Network| o
variable that would appear across the open circuit
terminals of the network.
Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source F, in parallel with an equivalent Linear
impedance Z,, where Network
Z, = the impedance of the network with all sources set v
equal to zero, and |
F <> 7 Linear | J/ r
F, = a through variable source equal to the through ¢ ¢ Network| ¢
variable that would flow through the short

circuited terminals of the network.




Norton Equivalent Example

(Summary)
R1 Ry
V] “— R3 % % R5 @ ie CAD Ze
L] :
R, I Norton
02 Equivalent

i, = current that would flow through the short-circuited terminals of the network

Z, = impedance’of the network when the voltage sources are replaced by short circuits
(seen at the output port)

R.(R, +R
R.|R, + 3(R; +R,)
5 _ (R; +R; +R,)
‘ R.(R, +R
R5—|— R4—|— 3( 1+ 2)
(R, +R;+R,)
R IR R,(R, +R,)
C_ 0 [oRs (R 4+ Ry + RYIR, LY (Ry+R +R))
" Z (Ry+Ry)R3+ (R + Ry +R3)(R, +Rs) R.+|R + R3(R; +R,)
> "% (Ry+R, +R,)
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Thevenin’s Theorem

A linear two-terminal network is equivalent to an

across variable source V, in series with an equivalent Linear
impedance Z,, where Network
Z, = the impedance of the network with all sources set v
equal to zero, and 7
e
: Li —®
V, = an across variable source equal to the across 174 mneat v,
. . ¢ Network| o
variable that would appear across the open circuit
terminals of the network.
Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source F, in parallel with an equivalent Linear
impedance Z,, where Network
Z, = the impedance of the network with all sources set v
equal to zero, and |
F <> 7 Linear | J/ r
F, = a through variable source equal to the through ¢ ¢ Network| ¢
variable that would flow through the short

circuited terminals of the network.
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