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Component Interconnection and Signal Conditioning
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The	loading	effect
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Rm

Voltmeter

preceding		
component

We need to quantify the effect of the effect of interconnecting
•to match input to output, e.g. to optimize power transfer 

efficiency 
•to minimize loading for a sensor



Measurement Loading

Across Variable Measurements

Suppose that we wish to measure an across variable at the output of
a “device under test” with a “measurement instrument.”  The
measurement instrument is attached across the terminals of interest.
Of course we desired that the measured variable be undisturbed by
the connection of the instrument.  That is, we want   Vm  to be as
nearly equal to   Vo  as possible.  We say that the measurement
instrument should not “load” the device under test.

The output impedance of the device under test is the equivalent
impedance defined by its Thevenin model   Z Zo e=  for the unloaded
output terminals.

Similarly, the input impedance   Ziof the measurement instrument is
the Thevenin equivalent impedance defined for its input terminals.

Ze

Zi
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device
under
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Zi
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Vm

measurement
instrument

Zi
device
under
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measurement
instrument

F

Connecting the Thevenin model for the device under test to the
input impedance of the measurement instrument we have the
network at the right.

The Thevenin equivalent across variable source is by definition
equal to   Vo , the value that we wish to measure.  Applying the across

variable divider rule:  
    

V s
V s Z Z
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input impedance
of the measurement instrument must be large in comparison with
the output impedance of the device under test:    Z Zi o>>

Zo
Ve Vm Zi

Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in
a device under test with a measurement instrument.  In this case, the
variable of interest flows through the measurement instrument.  We
desired that the measured variable be undisturbed by the connection
of the instrument.  That is, we want   Fm  to be as nearly equal to   Fo  as
possible.

The output admittance of the device under test is the equivalent
admittance defined by its Norton’s  model     Y Zo e= 1  for the
unloaded output terminals.

Similarly, the input admittance   Yi of the measurement instrument is
the Norton equivalent admittance defined for its input terminals.

Yi
device
under
test

Yi
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Fm

measurement
instrument
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instrument
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Connecting the Norton model for the device under test to the input
admittance of the measurement instrument we have the network at
the right.

The Norton equivalent through variable source is by definition equal
to   Fo , the value that we wish to measure.  Applying the through

variable divider rule:  
    

F s
F s Y Y
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input admittance
of the measurement instrument must be large in comparison with
the output admittance of the device under test:    Y Yi o>>

YiYoFe Fm
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Use	Thevenin	equivalent	circuit	for	across	variable	measurements	so	you	can	use	the	across	variable	divider	rule.	
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⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪
Device	Under	Test

What	is	the	smallest	Rm	such	that	the	voltage	vmeas	displayed	on	the	voltmeter	will	be	within	1	
Volt	of	vtrue	?

Loading:	Example	#1

Rm

Voltmeter

vmeasvtrueiin R
3	A 200	Ω

Voltmeter	model:	
purely	resistive

Thevenin-equivalent	model	of	Device	Under	Test: veq

Req
+

veq	=	iin R

=	600	V
=	vtrue

Req	=	R
=	200	Ohms
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Loading:	Example	#1

veq

Req
+

veq	=	iin R

=	600	V
=	vtrue

Req	=	R
=	200	Ohms

Rm

Voltmeter

vmeas

Voltage	divider	formula	yields:
! 
vmeas = veq

Rm
Rm + Req ! 

= vtrue
Rm

Rm + Req !! 
= 600!V Rm

Rm + 200!Ω

Required: !! 599!V ≤ vmeas ≤ 601!V

What	is	the	smallest	Rm	such	that	the	voltage	vmeas	displayed	on	the	voltmeter	will	be	within	1	
Volt	of	vtrue	?

The	smallest	satisfactory	Rm	satisVies

!! 
599!V = 600!V Rm

Rm + 200!Ω
⇒			Rm	=		119,800	Ω
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Loading: Example #2

vtrueiin R

⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

Device	Under	Test

Cm

AC Voltmeter

vmeas

What	is	the	largest	Cm	such	that,	in	the	steady	state,	the	amplitude	displayed	on	the	voltmeter	will	
be	within	1	percent	of	the	amplitude	of	vtrue	?

AC	voltmeter	model:		
purely	capacitive	

Zm(s)	=	1/(Cm	s)3	sin(5	t)		
Amps

200	Ω

Thevenin-equivalent	model	of	Device	Under	Test: veq

Req
+ =	600	sin(5	t)	V

=	vtrue

Req	=	R
=	200	Ohms

veq	=	iin R
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Cm

AC Voltmeter

vmeasveq

Req
+

Req	=	R
=	200	Ohms

=	600	sin(5	t)	V
=	vtrue

veq	=	iin R

Thevenin-equivalent-based	model	of	complete	system:

Loading: Example #2

Voltage	divider	formula	yields:
!! 
Vmeas(s) = Veq(s)

Zm(s)
Zm(s)+ Req

= Vtrue(s)
1
Cm s
1
Cm s

+ R

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= Vtrue(s)
1

RCm s + 1
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

!! 

99
100 ≤

1
RCm s + 1 R=200Ω

s= j5!sec−1

≤
101
100Required:

What	is	the	largest	Cm	such	that,	in	the	steady	state,	the	amplitude	displayed	on	the	voltmeter	will	
be	within	1	percent	of	the	amplitude	of	vtrue	?

The	largest	satisfactory	Cm	value	satisVies

!! 
99
100 =

1
[(200)Cm(5)]2+ 1 !! 

⇒ Cm =
1

1000
100
99
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2
− 1! ≈ 0.1425×10−3!!F



Loading: Example #3
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When we measure vtrue with the voltmeter, how much 
does the measured voltage, vmeas, differ from vtrue?

Rm

Voltmeter

vmeasv1

R1

R3

R2

R4

v2

R5 vtrue

ve

Ze

+
–

Thevenin
Equivalent

   
ve = vtrue =

v1R3−v2(R1 + R2 + R3)⎡⎣ ⎤⎦R5
(R1 + R2)R3 + (R1 + R2 + R3)(R4 + R5)

   

Ze =

R5 R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R5 + R4 +
R3(R1 + R2 )

(R3 + R1 + R2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

easy to gethard to get



   

vmeas = ve
Rm

Rm + Ze
= ve

1

1+
Ze
Rm

vtrue = ve

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

⇒ vmeas = vtrue
1

1+
Ze
Rm   

vmeas = ve
Rm

Rm + Ze
= ve

1

1+
Ze
Rm

vtrue = ve

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

⇒ vmeas = vtrue
1

1+
Ze
Rm

ve

Ze

+
– Rm

Voltmeter

vmeas
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When we measure vtrue with the voltmeter, how much 
does the measured voltage, vmeas, differ from vtrue?

For vmeas ≈ vtrue	must
   have	Rm	≫	Ze	⇒

Thevenin	Equivalent	Circuit

   
Knowledge that ve =

v1R3−v2(R1 + R2 + R3)⎡⎣ ⎤⎦R5

(R1 + R2)R3 + (R1 + R2 + R3)(R4 + R5)
 not required!

   

vmeas = ve
Rm

Rm + Ze
= ve

1

1+
Ze
Rm

vtrue = ve

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

⇒ vmeas = vtrue
1

1+
Ze
Rm



Measurement Loading

Across Variable Measurements

Suppose that we wish to measure an across variable at the output of
a “device under test” with a “measurement instrument.”  The
measurement instrument is attached across the terminals of interest.
Of course we desired that the measured variable be undisturbed by
the connection of the instrument.  That is, we want   Vm  to be as
nearly equal to   Vo  as possible.  We say that the measurement
instrument should not “load” the device under test.

The output impedance of the device under test is the equivalent
impedance defined by its Thevenin model   Z Zo e=  for the unloaded
output terminals.

Similarly, the input impedance   Ziof the measurement instrument is
the Thevenin equivalent impedance defined for its input terminals.

Ze

Zi

Ve
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under
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Zi

Vo
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measurement
instrument
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under
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measurement
instrument

F

Connecting the Thevenin model for the device under test to the
input impedance of the measurement instrument we have the
network at the right.

The Thevenin equivalent across variable source is by definition
equal to   Vo , the value that we wish to measure.  Applying the across

variable divider rule:  
    

V s
V s Z Z
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input impedance
of the measurement instrument must be large in comparison with
the output impedance of the device under test:    Z Zi o>>

Zo
Ve Vm Zi

Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in
a device under test with a measurement instrument.  In this case, the
variable of interest flows through the measurement instrument.  We
desired that the measured variable be undisturbed by the connection
of the instrument.  That is, we want   Fm  to be as nearly equal to   Fo  as
possible.

The output admittance of the device under test is the equivalent
admittance defined by its Norton’s  model     Y Zo e= 1  for the
unloaded output terminals.

Similarly, the input admittance   Yi of the measurement instrument is
the Norton equivalent admittance defined for its input terminals.

Yi
device
under
test

Yi

Fo

Fm

measurement
instrument

Yi
device
under
test

measurement
instrument

YoFe

Connecting the Norton model for the device under test to the input
admittance of the measurement instrument we have the network at
the right.

The Norton equivalent through variable source is by definition equal
to   Fo , the value that we wish to measure.  Applying the through

variable divider rule:  
    

F s
F s Y Y
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input admittance
of the measurement instrument must be large in comparison with
the output admittance of the device under test:    Y Yi o>>

YiYoFe Fm
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Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

Thevenin’s Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.

Ze
Ve

Linear
Network

Linear
Network

Ve

Norton’s Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=



Measurement Loading

Across Variable Measurements

Suppose that we wish to measure an across variable at the output of
a “device under test” with a “measurement instrument.”  The
measurement instrument is attached across the terminals of interest.
Of course we desired that the measured variable be undisturbed by
the connection of the instrument.  That is, we want   Vm  to be as
nearly equal to   Vo  as possible.  We say that the measurement
instrument should not “load” the device under test.

The output impedance of the device under test is the equivalent
impedance defined by its Thevenin model   Z Zo e=  for the unloaded
output terminals.

Similarly, the input impedance   Ziof the measurement instrument is
the Thevenin equivalent impedance defined for its input terminals.

Ze

Zi

Ve

device
under
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Zi

Vo

Vm

measurement
instrument
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device
under
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measurement
instrument

F

Connecting the Thevenin model for the device under test to the
input impedance of the measurement instrument we have the
network at the right.

The Thevenin equivalent across variable source is by definition
equal to   Vo , the value that we wish to measure.  Applying the across

variable divider rule:  
    

V s
V s Z Z
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input impedance
of the measurement instrument must be large in comparison with
the output impedance of the device under test:    Z Zi o>>

Zo
Ve Vm Zi

Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in
a device under test with a measurement instrument.  In this case, the
variable of interest flows through the measurement instrument.  We
desired that the measured variable be undisturbed by the connection
of the instrument.  That is, we want   Fm  to be as nearly equal to   Fo  as
possible.

The output admittance of the device under test is the equivalent
admittance defined by its Norton’s  model     Y Zo e= 1  for the
unloaded output terminals.

Similarly, the input admittance   Yi of the measurement instrument is
the Norton equivalent admittance defined for its input terminals.

Yi
device
under
test

Yi

Fo

Fm

measurement
instrument

Yi
device
under
test

measurement
instrument

YoFe

Connecting the Norton model for the device under test to the input
admittance of the measurement instrument we have the network at
the right.

The Norton equivalent through variable source is by definition equal
to   Fo , the value that we wish to measure.  Applying the through

variable divider rule:  
    

F s
F s Y Y
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input admittance
of the measurement instrument must be large in comparison with
the output admittance of the device under test:    Y Yi o>>

YiYoFe Fm
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Example 4

=

KgageMf

K

B

x
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Solution using Norton Equivalent of Device Under Test

e
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Solution not using Norton Equivalent of Device Under Test
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Solution not using Norton Equivalent of Device Under Test



KgageMf

K

B

x
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Same Example:

When the force in the spring is measured 
with a spring-based force gage, how much 
does the measured force, fgage, differ from 
the true force, ftrue, that would appear in the 
spring with no force gage present?

   

Fgage (s)
Ftrue (s)

=
Ms2 + Bs + K( )Kgage

s(Ms + B)K + (Ms2 + Bs + K)Kgage
We have shown that:

Closer Look at the Frequency Dependence of the Loading Effect

Mf

K

B

x

A	transfer	function?



KgageMf

K

B

x
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Same Example:

When the force in the spring is measured 
with a spring-based force gage, how much 
does the measured force, fgage, differ from 
the true force, ftrue, that would appear in the 
spring with no force gage present?

   

Fgage (s)
Ftrue (s)

=
Ms2 + Bs + K( )Kgage

s(Ms + B)K + (Ms2 + Bs + K)Kgage
We have shown that:

Closer Look at the Frequency Dependence of the Loading Effect

Mf

K

B

x
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100 101 102-3
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Fgage(s)/Ftrue(s) Frequency Response

 

 

100 101 102-30

-20

-10

0

Frequency (rad/sec) (at least 1501 points)

Ph
as

e (
de

g)

Kgage/K = 10
Kgage/K = 100

KgageMfappl

K

B

x

Mfappl

K
x

B

Zero	
loading	effect	

at		
low	frequencies	

   
lim

s→ j∞

Fgage(s)
Ftrue(s)

= lim
s→ j∞

Ms2( )Kgage

s(Ms)K + (Ms2)Kgage
=

Kgage

K + Kgage   

Fgage (s)
Ftrue (s)

=
Ms2 + Bs + K( )Kgage

s(Ms + B)K + (Ms2 + Bs + K)Kgage
⇒

Loading	effect	
at		

high	frequencies

M	=	1										K	=	(2π)2							B		=		2	(0.1)	(2π)

Physical	
explanation	  
At	steady-state,	
the	force	is	
supported	by	
both	springs:	it	
passes	“through”	

them

soft	gauge	spring

stiff	gauge	spring
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!! 

vgage
vtrue

=
Zin

Zin + Zout
=

1
1 +

Zout
Zin

Zin

Gage

vgage

+

−

vtrue +
−

Zout

Device	Under	Test

The	Loading	Effect:		The	Big	Picture

Reduce	loading	effect	by 
increasing	Zin	or	decreasing	Zout	or	both

Across	Variable	Measurement	Case

!! 

igage
itrue

=
Yin

Yin + Yout
=

1
1 +

Yout
Yin

Reduce	loading	effect	by		
increasing	Yin	or	decreasing	Yout	or	both

Through	Variable	Measurement	Case

Yin

Gage

igage
itrue +

−

Device	Under	Test

Yout
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!! 

vgage
vtrue

=
Zin

Zin + Zout
=

1
1 +

Zout
Zin

Zin

Gage

vgage

+

−

vtrue +
−

Zout

Device	Under	Test

A	Motivation	for	the	Voltage	Follower

Across	Variable	Measurement	Case

Reduce	loading	effect	by 
increasing	Zin		
or	decreasing	Zout		
or	both

!! Z1 ≈ ∞ !! Z2 ≈ 0

v1v1
+
−

Z2

Z1

+

−

v2

+

−

Voltage	Follower

Can	Vix	an	
impedance	mismatch!
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vtrue +
−

Zout

Device	Under	Test

v1v1
+
−

Z2

Z1

+

−

Voltage	Follower

!! Z1 ≈ ∞ !! Z2 ≈ 0

v2

+

−

Zin

Gage

vgage

+

−

An	Impedance	Mismatch	Fix

⇒
No	matter	what	
this	current	is,	

voltage	drop	across	
Z2	is	zero,	so 
v2	=	v1	

Current	here	is	always	
zero,	so	voltage	drop	
across	Zout	is	zero,	so	

	v1	=	vtrue	
Vgage = Vtrue
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From	Measurement	Systems	Application	and	Design,	5th	Edition,	by	Earnest	O.	Doebelin.

“Earth	ground”
⎨ ⎩⎧ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

These	three	grounds	ideally	at	same	potential.

Operational Amplifier Model

+
–
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Operational Amplifier Model

Power Supply Voltages

Input/Bias Currents

Input Impedance

Output Impedance

Input Voltages
Output Voltage

Output Current

Offset Voltage
eo  =  A (eA − eB − Vos) with ± saturation**

+
–

**

∞		
0	
0	
∞	
0
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"

+

Ideal Operational Amplifier

+

+
–
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Ideal Operational Amplifier

"

+ +

+
–

   
What	could	such	a	device	possibly	be	useful	for?
Open-loop	(i.e.,	without	feedback): Almost	nothing.
Closed-loop	(i.e.,	with	feedback): Plenty.			See	below.



�27

–15 
 Volts

+15 
 Volts

Quad	Op-Amp	Chip	LM348N

Dimple
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**Posted	on	course	web	page.

**



**From	our	textbook

** Recall	this	model	of	op-amp’s	gain	characteristic:

It	assumes	that	eA	and	eB	affect	eo		
only	via	their	difference,		eA	−	eB	.

That	is,	physical	op-amps	have	
nonzero	common-mode	gain	.

In	practice,	the	average	of	eA	and	eB	
also	affects	eo	.

See	Section	2.4.2.1	of	de	Silva	for	details.

(Complication:	Doebelin	and	de	Silva	employ	
different	deVinitions	of	common-mode	gain	!)	
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Example Application: Voltage Follower

vtrue +
−

Zout

Device	Under	Test

v1v1
+
−

Z2

Z1

+

−

Voltage	Follower

!! Z1 ≈ ∞ !! Z2 ≈ 0

v2

+

−

Zin

Gage

vgage

+

−

⇒
No	matter	what	
this	current	is,	

voltage	drop	across	
Z2	is	zero,	so 
v2	=	v1	

Current	here	is	always	
zero,	so	voltage	drop	
across	Zout	is	zero,	so	

	v1	=	vtrue	
Vgage = Vtrue
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Example Application: Voltage Follower
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"

+

Ideal Operational Amplifier

+

+
–



But, by inspection, voltage 
here is also eo, so it must 
also be that eo = ei.
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Example Application: Voltage Follower

For eo to not saturate,
voltage here must be ei.
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⇒
!! 
eo
ei

=1

⇒
!! 
Y(s)
R(s)=

G(s)
1+G(s) !! 

lim
G(s)→∞

Y(s)
R(s)=⇒

?

G(s)+
–

R(s) Y(s) 1

Consider:

What’s	going	on?

feedback

feedback

r(t)	=	 	=	y(t)

G(s)
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⇒
!! 
eo
ei

=1

With	saturation:

“Saturation”	limits	voltage	range

1

ei (volts)
1

~13

~	−13	

eo (volts)
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Rf

iB

iAFurthermore, iB = 0, so it
must also be that eo = ei.

For eo to not saturate,
voltage here must be ei.

Another Voltage Follower
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For e0 to not saturate, voltage here must be ei . 

 

The voltage divider formula then yields

       ei
eo

=
R1

R1 + R2
     

 
⇒       eo

ei
=
R1+ R2
R1
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ei
R1

eo
R2

iB

For e0 to not saturate, voltage here must be 0.

 

Furthermore iB = 0, from which it follows that

           ei
R1

=−
eo
R2

0

 

eo
ei

=−
R2
R1

⇒
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vo =

R + R f

R
vi = 1+

R f

R

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟vi

   
io =

R + R f

R
ii = 1+

R f

R

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ii

(see de Silva for derivation)

Same	noninverting	ampliVier	as	above,	drawn	differently

Figure	2.15

⇒

⇒



Figure	2.16
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vo =
Rf
R
vi2−vi1( )

vo =
R4
R3

1+ 2R1
R2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
vi2−vi1( )

(see de Silva for derivation)

(see de Silva for derivation)

!

"
Differential	
AmpliViers

⇒

⇒
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vo =
Rf
R
vi2−vi1( )

vo =
R4
R3

1+ 2R1
R2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
vi2−vi1( )

Figure	2.16a


