Component Interconnection and Signal Conditioning

ME 473
Professor Sawyer B. Fuller

The loading effect

We need to quantify the effect of the effect of interconnecting

- to match input to output, e.g. to optimize power transfer efficiency
- to minimize loading for a sensor

Across Variable Measurements

Suppose that we wish to measure an across variable at the output of a "device under test" with a "measurement instrument." The measurement instrument is attached across the terminals of interest. Of course we desired that the measured variable be undisturbed by the connection of the instrument. That is, we want V_{m} to be as nearly equal to V_{o} as possible. We say that the measurement instrument should not "load" the device under test.

The output impedance of the device under test is the equivalent impedance defined by its Thevenin model $Z_{o}=Z_{e}$ for the unloaded output terminals.

Similarly, the input impedance Z_{i} of the measurement instrument is the Thevenin equivalent impedance defined for its input terminals.

Connecting the Thevenin model for the device under test to the input impedance of the measurement instrument we have the network at the right.

The Thevenin equivalent across variable source is by definition equal to V_{0}, the value that we wish to measure. Applying the across variable divider rule: $\frac{V_{m}(s)}{V_{o}(s)}=\frac{1}{1+Z_{o} / Z_{i}}$.

Since we desire that the ratio approach unity, the input impedance of the measurement instrument must be large in comparison with the output impedance of the device under test: $Z_{i} \gg Z_{0}$

Use Thevenin equivalent circuit for across variable measurements so you can use the across variable divider rule.

Loading: Example \#1

What is the smallest R_{m} such that the voltage $v_{\text {meas }}$ displayed on the voltmeter will be within 1 Volt of $v_{\text {true }}$?

Thevenin-equivalent model of Device Under Test:

$$
\begin{aligned}
V_{e q} & =i_{i n} R \\
& =v_{\text {true }} \\
& =600 \mathrm{~V} \\
& \\
R_{e q} & =R \\
& =2000 \mathrm{hms}
\end{aligned}
$$

Loading: Example \#1

What is the smallest R_{m} such that the voltage $v_{\text {meas }}$ displayed on the voltmeter will be within 1 Volt of $v_{\text {true }}$?

Voltage divider formula yields: $\quad v_{\text {meas }}=v_{e q} \frac{R_{m}}{R_{m}+R_{e q}}=v_{\text {true }} \frac{R_{m}}{R_{m}+R_{e q}}=600 \mathrm{~V} \frac{R_{m}}{R_{m}+200 \Omega}$
Required: $599 \mathrm{~V} \leq v_{\text {meas }} \leq 601 \mathrm{~V} \quad$ The smallest satisfactory R_{m} satisfies

$$
599 \mathrm{~V}=600 \mathrm{~V} \frac{R_{m}}{R_{m}+200 \Omega} \Rightarrow R_{m}=119,800 \Omega
$$

Loading: Example \#2

What is the largest C_{m} such that, in the steady state, the amplitude displayed on the voltmeter will be within 1 percent of the amplitude of $v_{\text {true }}$?

Thevenin-equivalent model of Device Under Test:

Loading: Example \#2

Thevenin-equivalent-based model of complete system:

$$
\begin{aligned}
v_{\text {eq }} & =i_{\text {in }} R \\
& =v_{\text {true }} \\
& =600 \sin (5 t) \mathrm{V} \\
& \\
R_{\text {eq }} & =R \\
& =2000 \mathrm{hms}
\end{aligned}
$$

What is the largest C_{m} such that, in the steady state, the amplitude displayed on the voltmeter will be within 1 percent of the amplitude of $v_{\text {true }}$?
Voltage divider formula yields: $\quad V_{\text {meas }}(s)=V_{e q}(s) \frac{Z_{m}(s)}{Z_{m}(s)+R_{e q}}=V_{\text {true }}(s)\left(\frac{\frac{1}{C_{m} s}}{\frac{1}{C_{m} s}+R}\right)=V_{\text {true }}(s)\left(\frac{1}{R C_{m} s+1}\right)$ Required: $\frac{99}{100} \leq\left.\left|\frac{1}{R C_{m} s+1}\right|\right|_{\substack{R=200 \Omega \\ s=j 5 \sec ^{-1}}} \leq \frac{101}{100}$
The largest satisfactory C_{m} value satisfies

$$
\frac{99}{100}=\frac{1}{\sqrt{\left[(200) C_{m}(5)\right]^{2}+1}} \quad \Rightarrow \quad C_{m}=\frac{1}{1000} \sqrt{\left(\frac{100}{99}\right)^{2}-1} \approx 0.1425 \times 10^{-3} \mathrm{~F}
$$

Loading: Example \#3

When we measure $v_{\text {true }}$ with the voltmeter, how much does the measured voltage, $v_{\text {meas }}$ differ from $v_{\text {true }}$?

$$
Z_{e}=\frac{R_{5}\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}{R_{5}+\left[R_{4}+\frac{R_{3}\left(R_{1}+R_{2}\right)}{\left(R_{3}+R_{1}+R_{2}\right)}\right]}
$$

When we measure $v_{\text {true }}$ with the voltmeter, how much does the measured voltage, $v_{\text {meas }}$ differ from $v_{\text {true }}$?

$$
\left.\begin{array}{l}
v_{\text {meas }}=v_{e} \frac{R_{m}}{R_{m}+Z_{e}}=v_{e} \frac{1}{1+\frac{Z_{e}}{R_{m}}} \\
v_{\text {true }}=v_{e}
\end{array}\right\} \Rightarrow v_{\text {meas }}=v_{\text {true }} \frac{1}{1+\frac{Z_{e}}{R_{m}}} \Rightarrow \begin{aligned}
& \text { For } v_{\text {meas }} \approx v_{\text {true }} \text { must } \\
& \text { have } R_{m} \gg Z_{e}
\end{aligned}
$$

Knowledge that $v_{e}=\frac{\left[v_{1} R_{3}-v_{2}\left(R_{1}+R_{2}+R_{3}\right)\right] R_{5}}{\left(R_{1}+R_{2}\right) R_{3}+\left(R_{1}+R_{2}+R_{3}\right)\left(R_{4}+R_{5}\right)}$ not required!

Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in a device under test with a measurement instrument. In this case, the variable of interest flows through the measurement instrument. We desired that the measured variable be undisturbed by the connection of the instrument. That is, we want F_{m} to be as nearly equal to F_{o} as possible.

The output admittance of the device under test is the equivalent admittance defined by its Norton's model $Y_{o}=1 / Z_{e}$ for the unloaded output terminals.

Similarly, the input admittance Y_{i} of the measurement instrument is the Norton equivalent admittance defined for its input terminals.

Connecting the Norton model for the device under test to the input admittance of the measurement instrument we have the network at the right.

The Norton equivalent through variable source is by definition equal to F_{0}, the value that we wish to measure. Applying the through variable divider rule: $\frac{F_{m}(s)}{F_{o}(s)}=\frac{1}{1+Y_{o} / Y_{i}}$.

Since we desire that the ratio approach unity, the input admittance of the measurement instrument must be large in comparison with the output admittance of the device under test: $Y_{i} \gg Y_{o}$

Norton's Theorem

A linear two-terminal network is equivalent to a through variable source F_{e} in parallel with an equivalent impedance Z_{e}, where
$Z_{e}=$ the impedance of the network with all sources set equal to zero, and
$F_{e}=\mathrm{a}$ through variable source equal to the through variable that would flow through the short circuited terminals of the network.

Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in a device under test with a measurement instrument. In this case, the variable of interest flows through the measurement instrument. We desired that the measured variable be undisturbed by the connection of the instrument. That is, we want F_{m} to be as nearly equal to F_{o} as possible.

The output admittance of the device under test is the equivalent admittance defined by its Norton's model $Y_{o}=1 / Z_{e}$ for the unloaded output terminals.

Similarly, the input admittance Y_{i} of the measurement instrument is the Norton equivalent admittance defined for its input terminals.

Connecting the Norton model for the device under test to the input admittance of the measurement instrument we have the network at the right.

The Norton equivalent through variable source is by definition equal to F_{0}, the value that we wish to measure. Applying the through variable divider rule: $\frac{F_{m}(s)}{F_{o}(s)}=\frac{1}{1+Y_{o} / Y_{i}}$.

Since we desire that the ratio approach unity, the input admittance of the measurement instrument must be large in comparison with the output admittance of the device under test: $Y_{i} \gg Y_{o}$

Example 4

Consider the mass-spring-damper system shown above. A spring-based force gage, with spring constant $K_{\text {gage }}$, is to be inserted between the spring K and the wall, to measure the force in K in response to the applied force f. With $f_{\text {true }}$ representing the force in K without the gage present, and $f_{\text {gage }}$ representing the force in K with the gage present, $f_{\text {true }}$ and $f_{\text {gage }}$ satisfy

$$
\frac{F_{\text {gage }}(s)}{F_{\text {true }}(s)}=\frac{n(s)}{d(s)}
$$

where $n(s)$ and $d(s)$ are polynomials in the Laplace variable s.
(a) Determine $n(s)$ and $d(s)$.
(b) When f (the applied force) is constant, what is the relationship, in the steady state, between $f_{\text {gage }}$ and $f_{\text {true }}$?

Solution using Norton Equivalent of Device Under Test

Nortan-equivalent-based nodel of complete System:

Admittances "sum in parallel", so

$$
Y_{e q}=\frac{\left(Y_{B}+Y_{M}\right) Y_{K}}{\left(Y_{B}+Y_{M}\right)+Y_{K}}=\frac{\left(B+M_{S}\right) \frac{K}{S}}{(B+M S)+\frac{K}{S}}=\frac{(M S+B) K}{M s^{2}+B s+K}
$$

Through variable divider principal then gives

$$
\begin{aligned}
\frac{F_{\text {gage }}(s)}{F_{\text {true }}(s)} & =\frac{Y_{\text {gage }}}{Y_{\text {eq }}+Y_{\text {gage }}}=\frac{\frac{K_{\text {gage }}}{s}}{\frac{(M s+B) K}{M s^{2}+B s+K}+\frac{K_{\text {gage }}}{s}} \\
& =\frac{\left(M s^{2}+B s+K\right) K_{\text {gage }}}{s(M s+B) K+\left(M s^{2}+B s+K\right) K_{\text {gage }}}
\end{aligned}
$$

If f is constant then, in the steady state,

$$
\frac{f_{\text {gage }}}{f_{\text {true }}}=\frac{F_{\text {gage }}(0)}{F_{\text {true }}(0)}=1
$$

Solution not using Norton Equivalent of Device Under Test
without Gage

$$
\begin{aligned}
& f-B \dot{x}_{1}-K x_{1}=M \ddot{x}_{1} \\
\Rightarrow & F(s)=\left(M s^{2}+B s+K\right) x_{1}(s)
\end{aligned}
$$

with Gage

$$
\begin{gathered}
f \rightarrow M M_{\text {eq }} X_{2} \\
K \text { eq }=\frac{K K_{\text {gage }}}{K+K_{\text {gage }}} \\
f-B \dot{x}_{2}-K_{\text {eq }} X_{2}=M \ddot{x}_{2} \\
\Rightarrow F(s)=\left(M s^{2}+B s+K_{\text {eq }}\right) X_{2}(s)
\end{gathered}
$$

When the same $f(t)$ is applied to the two systems, the resulting $x_{1}(t)$ and $x_{2}(t)$ will satis fy

$$
\begin{equation*}
\left(M s^{2}+B s+K\right) X_{1}(s)=\left(M s^{2}+B s+K e q\right) X_{2}(s) \tag{1}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
& f_{\text {true }}=K X_{1} \Rightarrow F_{\text {true }}(s)=K X_{1}(s) \tag{2}\\
& f_{\text {gage }}=K_{\text {eq }} X_{2} \Rightarrow F_{\text {gage }}(s)=K_{\text {eq }} X_{2}(s) \tag{3}
\end{align*}
$$

Solution not using Norton Equivalent of Device Under Test
From (1), using (2) and (3),

$$
\begin{aligned}
& \frac{1}{K}\left(M s^{2}+B s+K\right) \underbrace{K X_{1}(s)}_{F_{\text {true }}(s)}=\frac{1}{K_{\text {eq }}}\left(M s^{2}+B s+K_{\text {eq }}\right) \underbrace{K_{\text {eq }} X_{2}(s)}_{\underbrace{}_{\text {gage }}(s)} \\
& \Rightarrow \frac{F_{\text {gage }}(s)}{F_{\text {true }}(s)}=\frac{K_{\text {Keg }}}{K} \frac{M s^{2}+B s+K}{M s^{2}+B s+K_{\text {eq }}} \\
& =\frac{\frac{K_{\text {gage }}}{K+K_{\text {gage }}}}{K} \frac{M s^{2}+B s+K}{M s^{2}+B s+\frac{K K_{\text {gage }}}{K+K_{\text {gage }}}} \frac{\frac{K_{1}}{1}}{\frac{K+K_{\text {gage }}}{1}} \\
& =\frac{K_{\text {gage }}}{1} \frac{M s^{2}+B s+K}{\left(M s^{2}+B s\right)\left(K+K_{\text {gage }}\right)+K K_{\text {gage }}} \\
& =
\end{aligned}
$$

just as derived above, much more simply, using the Norton-equivalent-based approach.

Same Example: Closer Look at the Frequency Dependence of the Loading Effect

When the force in the spring is measured with a spring-based force gage, how much does the measured force, $f_{\text {gage }}$, differ from the true force, $f_{\text {true, }}$, that would appear in the spring with no force gage present?

Same Example: Closer Look at the Frequency Dependence of the Loading Effect

When the force in the spring is measured with a spring-based force gage, how much does the measured force, $f_{g \text { age }}$, differ from the true force, $f_{\text {true, }}$, that would appear in the spring with no force gage present?

$$
\text { We have shown that: } \quad \frac{F_{\text {gage }}(s)}{F_{\text {true }}(s)}=\frac{\left(M s^{2}+B s+K\right) K_{\text {gage }}}{s(M s+B) K+\left(M s^{2}+B s+K\right) K_{\text {gage }}}
$$

Zero
loading effect
at
low frequencies

Physical

 explanation At steady-state, the force is supported by both springs: it passes "through" them$\mathrm{F}_{\text {gage }}(\mathrm{s}) / \mathrm{F}_{\text {true }}(\mathrm{s})$ Frequency Response

Loading effect at high frequencies

$$
M=1 \quad K=(2 \pi)^{2} \quad B=2(0.1)(2 \pi)
$$

$$
\frac{F_{\text {gage }}(s)}{F_{\text {true }}(s)}=\frac{\left(M s^{2}+B s+K\right) K_{\text {gage }}}{s(M s+B) K+\left(M s^{2}+B s+K\right) K_{\text {gage }}} \Rightarrow \lim _{s \rightarrow j \infty} \frac{F_{\text {gage }}(s)}{F_{\text {true }}(s)}=\lim _{s \rightarrow j \infty} \frac{\left(M s^{2}\right) K_{\text {gage }}}{s(M s) K+\left(M s^{2}\right) K_{\text {gage }}}=\frac{K_{\text {gage }}}{K+K_{\text {gage }}}
$$

The Loading Effect: The Big Picture

Across Variable Measurement Case

$$
\frac{v_{\text {gage }}}{v_{\text {true }}}=\frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{\text {out }}}=\frac{1}{1+\frac{Z_{\text {out }}}{Z_{\text {in }}}}
$$

Reduce loading effect by increasing $Z_{\text {in }}$ or decreasing $Z_{\text {out }}$ or both

Through Variable Measurement Case

$$
\frac{i_{\text {gage }}}{i_{\text {true }}}=\frac{Y_{\text {in }}}{Y_{\text {in }}+Y_{\text {out }}}=\frac{1}{1+\frac{Y_{\text {out }}}{Y_{\text {in }}}}
$$

Reduce loading effect by increasing $Y_{\text {in }}$ or decreasing $Y_{\text {out }}$ or both

A Motivation for the Voltage Follower

Across Variable Measurement Case

Reduce loading effect by increasing $Z_{\text {in }}$ or decreasing $Z_{\text {out }}$ or both

$$
\frac{v_{\text {gage }}}{v_{\text {true }}}=\frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{\text {out }}}=\frac{1}{1+\frac{Z_{\text {out }}}{Z_{\text {in }}}}
$$

Voltage Follower

An Impedance Mismatch Fix

Operational Amplifier Model

These three grounds ideally at same potential.

From Measurement Systems Application and Design, 5th Edition, by Earnest 0. Doebelin.

Operational Amplifier Model

Ideal Operational Amplifier

What could such a device possibly be useful for?

Open-loop (i.e., without feedback): Almost nothing.
Closed-loop (i.e., with feedback): Plenty. See below.

Quad Op-Amp Chip LM348N

LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

POST OFFICE GOK tossure DhaLAs, TEXas razto
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger			LM148			LM248			LM348			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX							
V 10	Ingut offset waltage				$\mathrm{V}_{\mathrm{O}}=0$		$25^{\circ} \mathrm{C}$		1	5		1	6		1	6	mV
		Full range					6			7.5			7.5				
10	Inpuf oflset current	$\mathrm{V}_{\mathrm{O}}=0$		$25^{\circ} \mathrm{C}$		4	25		4	50		4	50	nA			
				Full range			75			125			100				
IB	Input tias current	$\mathrm{V}_{\mathrm{O}}=0$		$25^{\circ} \mathrm{C}$		30	100		30	200		30	200	nA			
				Full range	325					500			400				
VICR	Camman mabe input valtage range			Full mange	± 12			± 12			± 12			V			
Vom	Maximum peak putput vollage swing	$\mathrm{F}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	± 12	± 13		± 12	± 13		± 12	± 13		V			
		$\mathrm{A}_{\mathrm{L}} \geq 10 \mathrm{kc} 2$		Full mange	± 12			± 12			± 12						
		$\mathrm{F}_{\mathrm{L}}=2 \mathrm{kS}$		$25^{\circ} \mathrm{C}$	± 10	± 12		± 10	± 12		± 10	± 12					
		$\mathrm{H}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$		Full range	± 10			± 10			± 10						
AVD	Large-signal differentai voltage ampificaton	$\begin{aligned} & v_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=22 \mathrm{~kg} \end{aligned}$		$25^{\circ} \mathrm{C}$	50	160		25	160		25	160		V/mV			
				Full range	25			15			15						
f_{1}	Input resistance \ddagger			$25^{\circ} \mathrm{C}$	0.8	2.5		0.8	2.5		0.8	2.5		MQ			
B_{1}	Unity-gain bartwidth	AVD $=1$		$25^{\circ} \mathrm{C}$		1			1			1		MHz			
¢m	Phase margin	$A_{V D}=1$		$25^{\circ} \mathrm{C}$		60°			60°			60°					
CMRA	Common-mode rejecfon rato	$V_{I C}=V_{\text {KCR }}$ min,$v_{\mathrm{O}}=0$		$25^{\circ} \mathrm{C}$	70	90		70	90		70	90		dB			
				Full range	70			70			70						
kSVF	Suppl-volage rejaction ratio $\left(A v \mathrm{CC}+2 V^{2} \mathrm{OI}\right.$	$\begin{aligned} & v_{\mathrm{CC} \pm}= \pm 9 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & v_{\mathrm{O}}=0 \end{aligned}$		$25^{\circ} \mathrm{C}$	77	96		77	96		77	96		dB			
				Full range	77			77			77						
log	Shart-airut cutput currem			$25^{\circ} \mathrm{C}$		± 25			± 25			± 25		mA			
${ }^{\circ} \mathrm{CC}$	Supply current (faur amplers)	No laad	$\mathrm{v}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$					2.4	4.5		24	45	mA			
			$V_{O}=V_{O M}$			2.4	3.6										
$\mathrm{V}_{\mathrm{Ol}} / \mathrm{V}_{\mathrm{O}}$	Crosstak attenuation	$1=1 \mathrm{~Hz}$ to 20 kHz		$25^{\circ} \mathrm{C}$		120			120			120		d ${ }^{\text {d }}$			

LM14B $-25^{\circ} \mathrm{C}$ रo $85^{\circ} \mathrm{C}$ tor LM24B and DOC to $70^{\circ} \mathrm{C}$ tor LM34B
\ddagger This paramever is not production testerd.
**Posted on course web page.

Ideal Op-Amp Properties

- Infinite open-loop differential gain
- Infinite input impedance
- Zero output impedance
- Infinite bandwidth
- Zero output for zero differential input

Ideal Analysis Assumptions

- Voltages at the two input leads are equal.
- Current through either input lead is zero.

Definitions

- Open-loop gain $=\left|\frac{\text { Output voltage }}{\text { Voltage difference at input leads }}\right|$, with no feedback.
- Input impedance $=\frac{\text { Voltage between an input lead and ground }}{\text { Current through that lead }}$, with other input lead grounded and the output in open circuit.
- Output impedance
$=\frac{\text { Voltage between output lead and ground in open circuit }}{\text { Current through that lead }}$, with normal input conditions.
- Bandwidth is the frequency range in which the frequency response is flat (gain is constant).
- GBP $=$ Open-loop gain \times Bandwidth at that gain
- Input bias current is the average DC current through one input lead.
- Input offset current is the difference in the two input bias currents.
- Differential input voltage is the voltage at one input lead with the other grounded when the output voltage is zero.

> - Common-mode gain $=\frac{\text { Output voltage when input leads are at the same voltage }}{\text { Common input voltage }}$

- Common-mode rejection ratio $(\mathrm{CMRR})=\frac{\text { Open loop differential gain }}{\text { Common-mode gain }}$
- Slew rate is the rate of change of output of a unity-gain op-amp, for a step input.

Recall this model of op-amp's gain characteristic:

> It assumes that e_{A} and e_{B} affect e_{o} only via their difference, $e_{A}-e_{B}$.

In practice, the average of e_{A} and e_{B} also affects e_{0}.

That is, physical op-amps have nonzero common-mode gain.

See Section 2.4.2.1 of de Silva for details.
(Complication: Doebelin and de Silva employ different definitions of common-mode gain!)

Example Application: Voltage Follower

Example Application: Voltage Follower

Ideal Operational Amplifier

Example Application: Voltage Follower

For e_{0} to not saturate, voltage here must be e_{i}. But, by inspection, voltage here is also e_{0}, so it must also be that $e_{0}=e_{i}$.

What's going on?

Consider:

"Saturation" limits voltage range

Another Voltage Follower

For e_{0} to not saturate, voltage here must be e_{i}.

Furthermore, $i_{B}=0$, so it must also be that $e_{o}=e_{i}$.

Noninverting amplifier

Same noninverting amplifier as above, drawn differently

Figure 2.15
(a) A voltage amplifier.
(b) A current amplifier.

$v_{o}=\frac{R_{f}}{R}\left(v_{i 2}-v_{i 1}\right)$

(b)

Figure 2.16a

2.4.4.2 Instrumentation Amplifier

The basic differential amplifier, shown in Figure 2.16a and discussed earlier, is an important component of an instrumentation amplifier. In addition, an instrumentation amplifier should possess the capability of adjustable gain. Furthermore, it is desirable to have a very high input impedance and very low output impedance at each input lead. It is desirable for an instrumentation amplifier to possess a higher and more stable gain, and also a higher input impedance than a basic differential amplifier. An instrumentation amplifier that possesses these basic requirements may be fabricated in the monolithic IC form as a single package. Alternatively, it may be built using three differential amplifiers and high-precision resistors, as shown in Figure 2.16b. The amplifier gain can be adjusted using the fine-tunable resistor R_{2}. Impedance requirements are provided by two voltage-follower type amplifiers, one for each input, as shown. The variable resistance δR_{4} is necessary to compensate for errors due to unequal common-mode gain. Let us first consider this aspect and then obtain an equation for the instrumentation amplifier.

