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The loading effect

Voltmeter

component

preceding % R, ®

We need to quantify the effect of the effect of interconnecting
® to match input to output, e.g. to optimize power transtfer
efficiency
® to minimize loading for a sensor



Across Variable Measurements

Suppose that we wish to measure an across variable at the output of device | S

a “device under test” with a “measurement instrument.” The under Z. rr}easurement

measurement instrument is attached across the terminals of interest. test o« - Instrument

Of course we desired that the measured variable be undisturbed by

the connection of the instrument. That is, we want V,, to be as

nearly equal to V,, as possible. We say that the measurement device o

instrument should not “load” the device under test. under V. |z, measurement
test | imstrument

The output impedance of the device under test is the equivalent °

impedance defined by its Thevenin model Z, = Z, for the unloaded

output terminals. o

Similarly, the input impedance Z;of the measurement instrument is ¢ :

the Thevenin equivalent impedance defined for its input terminals. *~—

Connecting the Thevenin model for the device under test to the

input impedance of the measurement instrument we have the

network at the right.

The Thevenin equivalent across variable source is by definition o

equal to V,, the value that we wish to measure. Applying the across 2 |

Va(s) 1 V., Vi | 4

variable divider rule: = )
V,(s) 1+Z,/Z,

Since we desire that the ratio approach unity, the input impedance
of the measurement instrument must be large in comparison with
the output impedance of the device under test: Z; >>Z,

3

Use Thevenin equivalent circuit for across variable measurements so you can use the across variable divider rule.




Loading: Example #1

Voltmeter
L ] @

Voltmeter model:
iin (4 R Vtrue  Vmeas R : \ purely resistive
3A 200 Q

o [
\ -V- y)

Device Under Test

What is the smallest R,,; such that the voltage viess displayed on the voltmeter will be within 1
VOlt Of Vtrue?

/‘ A A ® Veq — iinR

=0
Req true

Thevenin-equivalent model of Device Under Test: v, <"‘> =600V

Req — R
. = 200 Ohms




Loading: Example #1

- Voltmeter
Veq = i
= Otrue /\/\R{B\ql )
=600V, (¥ - Rm®
Req = R
— 200 Ohms *

What is the smallest R,,; such that the voltage viess displayed on the voltmeter will be within 1
VOlt Of Vtrue?

Voltage divider formula yields: v, = V,, Ry = Ve Ry = 600V Ry
R, + Ry, R, + Ry, R, + 200

Required: (599 V < vm@§ 601V  The smallest satisfactory R, satisfies

599V =600V R = R,= 119,800 (2

R+ 2009




Loading: Example #2

AC Voltmeter

AC voltmeter model:

i C,I\D R Ve _— _ Cm< % / purely capacitive

3 Sil’l(S t) 200 O Zm(S) _ 1/(CmS)
Amps o o

\ — J

Device Under Test

What is the largest C, such that, in the steady state, the amplitude displayed on the voltmeter will
be within 1 percent of the amplitude of Virue?

_/\/\/\/_. Veqg = IinR

=0
Req true

Thevenin-equivalent model of Device Under Test: Veg C"‘) =600 sin(5¢) V

Req — R
¢ = 200 Ohms




Loading: Example #2

Thevenin-equivalent-based model of complete system:

AC Voltmeter

Veq — iinR Py
— Otrue %
~600sin(59V ® o _
Req — R
— 200 Ohms ®

A

What is the largest C, such that, in the steady state, the amplitude displayed on the voltmeter will

be within 1 percent of the amplitude of Virue?

. . Zn(s)
Voltage divider formula yields: V s) =V (s aL
g y meas( ) eq( )Zm(S) _|_ Req
101
Required: kS < 1 < —
100 RC,s +1| |, 5000 100
s=j5 sec” !
The largest satisfactory C,, value satisfies
99 1 1
= = = C, =
100 \[200)C,, (5)1*+ 1 1000

7

= Verue(5)

b
C.,s

b
C.,s

_|_

100

|

99

R

— Vtrue(S) {

2
] ~ 1 ~01425x10°3 F

1

RC, s +1

|



0]

Loading: Example #3

R

Ze —Ge
Y 01R; —v,(Ry + Ry + R3)|R;
- © T (R4 Ry)Ry + (R + Ry + Ry)(R, + Rs)
o
Thevenin

Equivalent

Ry
MV— .
% Rs Otrue
I .

|
!
02

Voltmeter

Omeas

=

When we measure vy, with the voltmeter, how much

does the measured voltage, Ve, differ from vg,.?

hard to get

R o Re(Ri+Ry)

R
7% (Ry+ R, +R,)

¢ R,(R, +R,)

Rs+|R, +

(R; +R; +R,)

easy to get




Thevenin Equivalent Circuit

Voltmeter

Ze @

Omeas

2 O

®

When we measure v, with the voltmeter, how much

does the measured voltage, Ve, differ from vg.?

r =0

meas Z)true

1

1+ e
R

m

[01R3 —0,(R; + R, + R3)]R5

R, 1
Rm
Otrue = Ue
Knowledge that v, =

(R; + Ry)R; + (R + Ry + Ry)(Ry +Rs)

FOF Vmeas ~ Vtrue mU.St

= have R > Z.

not required!



Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in
a device under test with a measurement instrument. In this case, the
variable of interest flows through the measurement instrument. We
desired that the measured variable be undisturbed by the connection
of the instrument. That is, we want F,, to be as nearly equal to F, as

possible.

The output admittance of the device under test is the equivalent
admittance defined by its Norton’s model Y, =1/Z, for the

unloaded output terminals.

Similarly, the input admittance Y;of the measurement instrument is
the Norton equivalent admittance defined for its input terminals.

device |
under \L F,
test |

measurement
'l instrument

device
under
test

Y measurement
instrument

Connecting the Norton model for the device under test to the input
admittance of the measurement instrument we have the network at

the right.

The Norton equivalent through variable source is by definition equal
to F,, the value that we wish to measure. Applying the through

E,(s) 1
E(s) 1+Y,/Y;

variable divider rule:

Since we desire that the ratio approach unity, the input admittance
of the measurement instrument must be large in comparison with

the output admittance of the device under test: Y; >> Y,




Norton’s Theorem

A linear two-terminal network is equivalent to a
through variable source F, in parallel with an equivalent

impedance Z,, where

Z, = the impedance of the network with all sources set
equal to zero, and

F, = a through variable source equal to the through

variable that would flow through the short
circuited terminals of the network.

Linear
Network

FolE

Linear

Networkj J/ Ee




Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in
a device under test with a measurement instrument. In this case, the
variable of interest flows through the measurement instrument. We
desired that the measured variable be undisturbed by the connection
of the instrument. That is, we want F,, to be as nearly equal to F, as

possible.

The output admittance of the device under test is the equivalent
admittance defined by its Norton’s model Y, =1/Z, for the

unloaded output terminals.

Similarly, the input admittance Y;of the measurement instrument is
the Norton equivalent admittance defined for its input terminals.

device |
under \L F,
test |

measurement
'l instrument

device
under
test

Y measurement
instrument

Connecting the Norton model for the device under test to the input
admittance of the measurement instrument we have the network at

the right.

The Norton equivalent through variable source is by definition equal
to F,, the value that we wish to measure. Applying the through

E,(s) 1
E(s) 1+Y,/Y;

variable divider rule:

Since we desire that the ratio approach unity, the input admittance
of the measurement instrument must be large in comparison with

the output admittance of the device under test: Y; >> Y,




Example 4

> e A=

—/000——000"
f— M B Kgage—

/> M

Ve

Consider the mass-spring-damper system shown above. A spring-based force gage, with spring constant

Kgage, is to be inserted between the spring K and the wall, to measure the force in K in response to the applied

force f. With f,, representing the force in K without the gage present, and f,,,. representing the force in K
with the gage present, f;,,. and f;q4, satisty

Fgage (s) _ n(s)
Fre(s) d(s)

where n(s) and d(s) are polynomials in the Laplace variable s.

(a) Determine n(s) and d(s).

(b) When f (the applied force) is constant, what is the relationship, in the steady state, between f,,,. and fy;¢?



Solution using Norton Equivalent of Device Under Test

K Kgese
| 4
M -L**Ifw:!é
B

No«tm«ec()ui\/aiewt based model of complete System:

fer e Y Moss: Fu)=Mg Vmis)
u :
Gk = Y (s)= Ms

Spring:  Fie(s) = K Vk©
S

2 Y.o =K
\fe% = admibtmnce of K s
B M Dawper: = B Vg )

= YB (s)= g
pdmittonces 'sum in paraliel”| so

(YB“' YHX\(K _ (Bt Ms) \—(‘5 . (MstB)K

—

Teg =

(YerV) T Ve (BfMs)T £ Ms2+Bst+K .

’T’hroug\m vaviadde  divider Pr'mcipal +hen 8}\/@ Pe <1> Yo F ,,.,\l/

Kaaee
@

Faopes) _ _ Toae - S
N (Ms—i—B)K FCyone
Ferue © Teq + Yange + -2 E,(s) 1

Ms2+BstK S — .
(M52+Bs{- KS Kso\ge Fe(s) 1 + YO Yl

- S(MS“"B\K + (Ms*+ BS‘("(‘()Kaaoe.

If £ is <onstant thep, Tn the Sfeadg state,

f_%j;:e__ FSG“G’(O) = 1

Ferue Ferue (0)
14



Solution not using Norton Equivalent of Device Under Test

A o F2
4 Keq, X
£ —{ M v
i '*_“K'i(\ 3
<—-—Brx‘ B
Ke%-"— K Kgage
F—Bkr—Kx.:V‘% <t peee

£ - B&Z—K%Xz = M 5?1

= = “ K
> Fs) </V\5 + Bst K> /(5) = Fos) = (Ms* Bs'(‘ke@xZCS)

When the same f@&) s qpp(i@d, +6 the Two Iytems,
The rcsuu:\\/\'a X @) and X=e) will Satisfé

[(Mst+ Bst k) Xs) = (Ms*+ Bst o) Xetg) ()

Farthemore,

thY‘Mﬁ = K x] =2 F&VUQ S) = K X] (5) (2)
'Fgage = Ke% Ko = F@a&m )= Kttﬁ_ Xz (s) (®



Solution not using Norton Equivalent of Device Under Test

Feom (0\ USMOO* (2) and (3))

(
‘};(Ms% Bst+k) K X = —é- (Ms™+ Bs+ Keg) Keg K005
e\ —— % N
F;rue (s) nga.;( S)
= Faage®S _ Ke Ms+ Bst
| Ferue ¢5) < Ms2+Bs+ fre%
Wi g ger ko
= _;f@l“‘(gea%— ek
K MSZ”’— BS T Kf(&q(a;e 933¢
K*Kgpee 1
= Kenge Ms2+ Bst+ I
1 (Ms"’w— Bs) (K+{<8aae>+ K Kqage
— Kgage Ms2+Bst K 7
l S(MS‘f‘ B)K"f‘ (MSZ+BSTK>K36(&€

just as derived  alave | mudn mere Simplyyy
usingy {1 Moctm«au‘l\/alem,ba;&d appréach .

16



Same Example: Closer Look at the Frequency Dependence of the Loading Effect

il |
—000— —000——000"
f—> M B “Kgage—

f— M

VL

VL

Sl

When the force in the spring is measured
with a spring-based force gage, how much
does the measured force, foqe, differ from
the true force, fie, that would appear in the
spring with no force gage present?

F_ (s) fé(MserBerK)K
We have shown that: - — — - gage
Ftrue(s) wS+B)K+(MS —I—BS—I—K)K

8ase

A transfer function?



Same Example: Closer Look at the Frequency Dependence of the Loading Effect

X X

— K — A~
—000— A
f% M \ f% M B —Kgage—

i

Sl

When the force in the spring is measured
with a spring-based force gage, how much
does the measured force, foqe, differ from
the true force, fie, that would appear in the
spring with no force gage present?

Frrge(s) (Ms? + Bs + K)K g,

We have shown that: — -
Frue(s)  s(Ms+B)K +(Ms” + Bs+ K)K

8ase



ik
%w
X

Jappr —>| M Jappt —>{ M B'_'KgagE'
Fgage(s)/ F__(s) Frequency Response =
2 | | T
% 1r stiff gauge spring |
2 0 =3 S — .
£
c-1r =
& Kgage/K=10 soft gauge spring
= 2 Kgage/K =100 ]
Zero N o Il(l)o | | - Il(l)l | | S I1£)2 L d ff
loading effect Frequency (rad/sec) (at least 1501 points) od H;% eftect
at : :
high f
low frequencies o T | 18l trequencies
Physical oD
. < -10 i
explanation <l
At steady-state, 2
the force is & -20 -
supported by U
both springs: it 230 L L L
passes “through” 10’ 10’ 10°
them Frequency (rad/sec) (at least 1501 points)
M=1 K=(2n)2 B =2(0.1)(2m)
2 2
Fge(s) (Ms? +Bs+ K)K . o Faw® (MK Ky
F..(s)  s(Ms+B)K+ (Ms? +Bs+K)K s—joo F,_ (8)  s—joo s(Ms)K 4 (Ms?)K K+K

gage gage



The Loading Effect: The Big Picture

Across Variable Measurement Case

Device Under Test Gage
Zout ®
o]
Vtrue Vgage Zln
) |
Vgage _  Zin _ 1
Vtrue Zin + Zout 1 + Zout

in

Reduce loading effect by
Increasing Z;, or decreasing Z,,: or both

Through Variable Measurement Case

Device Under Test Gage
.
o
lgage
Itrye Yout Yin
I
Lgage _ Yin _ 1
itrue Yin + Yout 1+ @

Reduce loading effect by
increasing Y;, or decreasing Y,,: or both

20



A Motivation for the Voltage Follower

Across Variable Measurement Case

Device Under Test Gage
Zout ®
-
Vitrue Vgage Zin
.
Y gage _ Zin _ 1
vtrue Zin + Zout 1+ @
Zin
Voltage Follower
D Z ®
+ | | +
Vi A V1 @ V2
L .
Zy R 00 Zy, =0

21

Reduce loading effect by
increasing Zi,

or decreasing Z

or both

Can fix an
impedance mismatch!



An Impedance Mismatch Fix

Device Under Test Voltage Follower Gage
Zout o> Z .-’%—
+ ‘ + |+ \
Vtrue V1 Zq Vi V2 Vgage Zin
: | -1 |
Zy R 00 Zy, =0
Current here is always No matter what
zero, so voltage drop this current is,
across Zout iS Zero, so = Veuge = Virue voltage drop across
Vi = Vtrye Z» 1S Zero, SO

VZI V1

22



Operational Amplifier Model

Vs

' $
- - -
l j_ Power supply
<7 - common
Signal Chassis K
ground ground “Earth ground”
\ — y)

These three grounds ideally at same potential.

From Measurement Systems Application and Design, 5th Edition, by Earnest O. Doebelin.

23



Operational Amplifier Model

Input Impedance Offset Voltage
eo = A (ea — e — Vos) with tsaturation™™
Output Impedance
Input/Bias Currents Output Current

Input Voltages e —
-\ L+/I/ Output Voltage

o
+V,
Y . 2 - -
l Power supply
. <7 - common
*k €o . .
A Signal Chassis

|
et ground ground

Power Supply Voltages

os"‘: + Saturation
|
l
|

Open-loop gain A 100,000 V/V

> Offset voltage V *1mV @ 25°C
: (€4 -€g) MV Bias currents i,, ip 107%t0 10714 A
. Input impedance Z;, 10° to 10! Q)
- Saturation Output impedance Z, 1t0 10 Q
90=(3A-88-V“)A \/

24



Ideal Operational Amplifier

Vos
+ o- I}
o— f ig +—>
-0 ‘p §
O~ A A ~<4—>
S— es + T
-~ o eA o
Y _ * - VS + \/S -
—_ l j_ Power supply
<7 —  common
e . Signal Chassis
o A ground ground
volts
“"‘Vos"ll + Saturation
|
:' Open-loop gain A
+ — + Offset voltage V,
(ea -€p) MV Bias currents i, i
| A "B Input impedance Z,,
' Output impedance Z,
- Saturation
eo = (GA -88- VOS)A

25



+

What could such a device possibly be useful for?

Open-loop (i.e., without feedback): Almost nothing.

Closed-loop (i.e., with feedback):  Plenty. See below.

o__

o_

O— -0

e, "
volts
L""Vos"’i + Saturation
I
|
|
—

| (eq -€g) mV
|

- Saturation

eo= (GA -eB"' VOS)A

'Vs +V:

Y - o -
l j_ Power supply
{7 - common
Signal Chassis
ground ground

Open-loop gain A
+ Offset voltage V
Bias currents i, i
Input impedance Z,
Output impedance Z,

26



Quad Op-Amp Chip LM348N

Output1 1 [ ] 14 Output4

Inverting Input 1 2 I::l: i:l::l 13 Inverting Input 4
Non-inverting Input 1 3 I: :l 12 Non-inverting Input 4

Voot 4 [ [] 11 Vee-
Non-inverting Input 2 5 |: :| 10 Non-inverting Input 3
Inverting Input2 6 E:[>—‘ ﬂj 9 Inverting Input 3
Output2 7 |: :| 8 Output3

Yec- = -15volts

Yec+ = +15 volts

27



LM148, LM248, LM348 *"

*9 TEXAS
INSTRUMENTS QUADRUPLE OPERATIONAL AMPLIFIERS

ERSNEREASHEGN, SIEEs GALLAR SENAR o SLOSASEE - OCTORER 1978 - REVISED FERRUARY 2000

electrical characteristics at specified free-air temperature, Voo + =115 V (unless otherwise noted)

LM148 LM248
PARAMETER TEST CONDITIONST S e Bkl B T R UNIT
25'C 1 5 1 6
Vin Irgust oftset waltape Vo -0 Full range P 75 mV
?5'C 4 25 4 a0
o Inaut oftsal current Vp~0 Full range 75 25 nA
220 40 W] 40 X0
o Iraut biies current Vp~0 Full range 325 00 nA
VicR Camman mad input valtange mnge i range 112 (3 V4 v
M =10k 25°C +12 =13 12  *13
" R =10 e anpe 12 i 4
Vou :::?um . nt 2% 25'-0? +10 -2 0 12 v
REL-z xl U ranpe 410 £10
D Large-signal diferantad woltage | Vo =+10 V, o R = = VeV
ampificatan Ap=22x0 Fut ranpge = 15
f Ingut resistance b 25°C 08 25 08 25 MG
B4 Unity-gien bargadth Ayp =1 25°C 1 MHz
m Fhase margin Ayp =1 25°C a0 a0-
CMRAR  Commorrmode rejecton afo Eg:: KCRmn, Fj':m 2 = :z = o8
ksvi Sunpiy-vollage rejecton reo Voos =13 VI 15V, ?5*0 v 96 o 96 -
AoVl V=0 Ful range e T
log Sharl-croul autaw! curren? 25C L) 125 mA
V=0 24 45
lce Sunply currenlt {faur ampiles) Na ki o= Vou 25°C 24 26 mA
Vo1voe  Grosstak attenuation 1= 1 Hz 1020 kHz 25'G 120 120 o8

T AL charactenstics are measared under open pap condtars with zem cammon made mpat voltage, uniess atherwse specded. Fu range far Ty is  55°C I 125°C ar
LMI4B, - 25°C 10 85°C dar LM24B, and 0°C 1o 7000 dar LM34B
$Ths pisneneder is nal production lesked.

**Posted on course web page.
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Box 2.1 Op-Amps **
Ideal Op-Amp Properties

e Infinite open-loop differential gain

Infinite input impedance

Zero output impedance
Infinite bandwidth

 Zero output for zero differential input

Ideal Analysis Assumptions

* Voltages at the two input leads are equal.
o Current through either input lead is zero.

Definitions

Output voltage
Voltage difference at input leads

¢ Open-loop gain = , with no feedback.

Voltage between an input lead and ground
Current through that lead

e Input impedance = , with other

input lead grounded and the output in open circuit.
¢ Output impedance

__Voltage between output lead and ground in open circuit

ith 1
Current through that lead » with norma

input conditions.

e Bandwidth is the frequency range in which the frequency response is flat
(gain is constant).

* GBP = Open-loop gain x Bandwidth at that gain

e Input bias current is the average DC current through one input lead.

e Input offset current is the difference in the two input bias currents.

« Differential input voltage is the voltage at one input lead with the other
grounded when the output voltage is zero.

e Common-mode gain

_ Output voltage when input leads are at the same voltage
B Common input voltage

£ a1 oai
¢ Common-mode rejection ratio (CMRR) = Open loop differential gain

Common-mode gain
¢ Slew rate 1s the rate of change ot output of a unity-gain op-amp, for a step
input.

**From our textbook

Recall this model of op-amp’s gain characteristic:

volts

s~ + Saturation

—
| (eq -€g) MV
|
- Saturation

eo= (eA "ea- V“)A

[t assumes that e4 and ep affect e,
only via their difference, e, — ep.

In practice, the average of e, and ep
also affects e,.

That is, physical op-amps have
nonzero common-mode gain.

See Section 2.4.2.1 of de Silva for details.

(Complication: Doebelin and de Silva employ
different definitions of common-mode gain!)



Example Application: Voltage Follower

Device Under Test

Zout

Vtrue

Current here is always
zero, so voltage drop
across Zout is zero, so

V1= Vtrue

Voltage Follower Gage
Z ."9—
‘ + [+ \
A Vi V2 Vgage Zin
| 1
Z1 ~ 0O ZZ ~ 0

No matter what
this current is,
voltage drop across
Z» 1S Zero, SO
V2="1

—> Vgage = Virue

30



Example Application: Voltage Follower

—o +

31



Ideal Operational Amplifier

Vos
+ o- I}
o— f ig +—>
-0 ‘p §
O~ A A ~<4—>
S— es + T
-~ o eA o
Y _ * - VS + \/S -
—_ l j_ Power supply
<7 —  common
e . Signal Chassis
o A ground ground
volts
“"‘Vos"ll + Saturation
|
:' Open-loop gain A
+ — + Offset voltage V,
(ea -€p) MV Bias currents i, i
| A "B Input impedance Z,,
' Output impedance Z,
- Saturation
eo = (GA -88- VOS)A

32



Example Application: Voltage Follower

For e, to not saturate,
voltage here must be e;.
But, by inspection, voltage
here is also e,, so it must
also be that ¢, = e..

—o +

33



What's going on?

feedback \

> & —0 +

(6 = o, % =) e, '
4 —o -
Consider:

Y(S) G(S) i Y(S)
R = R
(5) = _ _._> = R(s) 1+G(s) = \G(SI)I\EOO R(s) 1

K feedback

34



“Saturation” limits voltage range

With saturation:

e, (volts)
~13

35

e; (volts)



For ¢, to not saturate,
voltage here must be e;.

Furthermore, iz = 0, so it
must also be that ¢, = ¢;.

Another Voltage Follower

Ry

—o +

36




For ¢, to not saturate, voltage here must be e;.
r— The voltage divider formula then yields

ei o Rl s eO o Rl —|_ R2
e, R +R, e; R,
Y
AAA————
—&—o +

Noninverting amplifier

37



For e, to not saturate, voltage here must be 0.
F_ Furthermore iz = 0, from which it follows that

€; € € RZ
_— — - = =
R R, € R,
Ry Ry
— VW AN

/0 e,

2 o

RZ

Inverting amplifier

38



Same noninverting amplifier as above, drawn differently

Input
Vi . +\ Output R_|_Rf R
A / o Vo — v, = = vi:[H__f]vi
R
o _
= A
(@)
R
AMWW—
B
1l ——ww
- l R; R
+R R
: f . :
ALl Load = 1, = R zi:[1_|_?f]zi

Input ii / i (see de Silva for derivation)
+ 0}

Figure 2.15
(b) - = (a) A voltage amplifier.
(b) A current amplifier.

39



—° (see de Silva for derivation)
R
f 0
Differential
Amplifiers
NG g
R,
= % Ry —\WW—
1
R
—AMAN——= R 2R
Inputs R, \ o Output = v, =—%|1+ . (Uiz _vﬂ)
—W\— Vo Ryl R
2 R3 (see de Silva for derivation)
N R R, + 6R,
Vip o B N Figure 2.16
+ = (a) A basic differential amplifier.
(b) (b) A basic instrumentation amplifier

40



R
v, =L (0, —0,)
0o R 2 i1 Vig o
— N
R
Vi1 0_4444/'\ —\
Inputs , ° Qutput ')
2 — MWW / v, Inputs o Output
R B + (o] p Vo
—o
R
(a) = Vio o

Figure 2.16a
2.4.4.2 Instrumentation Amplifier

The basic differential amplifier, shown in Figure 2.16a and discussed earlier, is an important component
of an instrumentation amplifier. In addition, an instrumentation amplifier should possess the capability
of adjustable gain. Furthermore, it is desirable to have a very high input impedance and very low output
impedance at each input lead. It is desirable for an instrumentation amplifier to possess a higher and
more stable gain, and also a higher input impedance than a basic differential amplifier. An instrumen-
tation amplifier that possesses these basic requirements may be fabricated in the monolithic IC form
as a single package. Alternatively, it may be built using three differential amplifiers and high-precision
resistors, as shown in Figure 2.16b. The amplifier gain can be adjusted using the fine-tunable resistor R,.
Impedance requirements are provided by two voltage-follower type amplifiers, one for each input, as

shown. The variable resistance OR, is necessary to compensate for errors due to unequal common-mode
gain. Let us first consider this aspect and then obtain an equation for the instrumentation amplifier.
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