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Figure 2.19
Ideal filter characteristics: (a) Low-pass filter. (b) High-pass filter. (c) Band-pass filter. (d) Band-reject (notch)
filter.
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Figure 2.21 (a) A single-pole active low-pass filter ~ (b) the frequency response characteristic.
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Voltage Follower
Node equations for A and B yield:
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From the leftmost equation in (3), using (4),
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Figure 2.22 A two-pole low-pass Butterworth filter.
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de Silva’s Eq. 2.54 is incorrect

—NW— (sign error)
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Figure 2.24 (a) A single-pole high-pass filter (b) frequency response characteristic
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Figure 2.25 (a) An active band-pass filter

(b) Frequency response characteristic
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(see de Silva for derivation)
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Figure 2.26 (a) A resonance-type narrow band-pass filter

(b) frequency response characteristic
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Figure 2.27 (a) A twin T filter circuit

(b) Frequency response characteristic
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a.k.a. a band-reject or notch filter



Signal Modulation
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FIGURE 2.28 (a) Modulating signal (data signal), (b) amplitude-modulated (AM) signal, (c) frequency-modulated
(FM) signal, (d) pulse-width-modulated (PWM) signal, and (e) pulse-frequency-modulated (PFM) signal.




AM Radio

Amplitude Modulation

Modulating x(t)
input Multiplier Modulated
(data) signal
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signal O——

X,(t) = x(t) x.(t)

X.(t) = a.cos2rnf.t

Why amplitude modulate radio signals?

1. The sum of the modulated signals from multiple radio stations can be broadcast
over long distances.

2. It is relatively easy to recover one radio station’s data signal, x(¢), from the sum of
the modulated signals from multiple radio stations.



AM Radio

Amplitude Modulation Modulated Demodulation

signal

I
Modulating x(t) (
input Multiplier
(data) /N\ Multiplier
I\ "> 0—of X,(t) = x(t) x(t) P L
Original signal
Carrier ><)ut ~ B x(t) B x(t)
signal O— ‘ Out > ow—pass >
Carrier filter
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2 cos 2nf.t

X.(t) = a.cos2rnf.t a, Cutoff= £,

L o What is f,?

=

What conditions guarantee that above demodulation scheme recovers x(t) exactly?

How did somebody come up with the above scheme?



What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?
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X.(t) = a.cos2rnf.t

What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?



What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

The Fourier transform, X ,(jw), of x,(t), is:
X,(jw) = [ Tx(t)e ) dt

where w is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

X (f) =[x, t)e 2 dt

—00

where fis the frequency in cycles/sec.
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Amplitude Modulation

Modulating x(t)
input Multiplier

(data) Modulated

signal

/\_~,

T o— TP
Carrier ><)ut—0%ﬂ“%&%—»
signal O——

‘HWHWWWWW (at) = x(6) x(t)

@:(t) = a,.CcoS 27‘(‘@




What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

The Fourier transform, X ,(jw), of x,(t), is:
X,(jw) = [ Tx(t)e ) dt

where w is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

X (f) =[x, t)e 2 dt

—00

where fis the frequency in cycles/sec.

Here

x,(t) = x(t) x.(t) = x(t)alcos(2f, t))




What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

From Euler’s formulas,

e]wct + e—]wct
2

cos(w, t) =

where w, is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

e]27rfct 4+ 3_127cht

cos(2mf.t) =

2

where f, is the frequency in cycles/sec.

x,(t) = x(t) x.(t) = x(t)afcos(27f. 1))

20



What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

The Fourier transform, X ,(jw), of x,(t), is:
X,(jw) = [ Tx(t)e ) dt

where w is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

XD = [ Tre T )

where fis the frequency in cycles/sec.

Here

x,(t) = x(t) x.(t) = x(t)alcos(2f, t))
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What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

Now from

X(f) = | Cx,(t)e i de
using
x,(t) = x(t)x.(t) = x(t)a.cos(27f.t)

and
ej27rfct + e—j27rfct

cos(2nf.t) = >

we have that

ej27rfct 4+ e—j27rfct e—j27rft dt

1 +00
X(f) = a7 x(0)
— [ ) U e g
1 +00 —j2n{f—f)t 1 +00 —j2n(f+f.)t
= —q, x(t)e cdt + —a, x(t)e " dt
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What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

Now from

X(f) = | Cx,(t)e i de
using
x,(t) = x(t)x.(t) = x(t)a.cos(27f.t)

and
ej27rfct + e—j27rfct

cos(2nf.t) = >

we have that

ej27rfct 4+ e—j27rfct e—j27rft dt

1 +00
X () = Sa T x®)
— [ ) U e g
1 +00 —j2n{f—f)t 1 +00 —j2n(f+f.)t
= —q, x(t)e cdt + —a, x(t)e " dt
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What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

Finally, using

X.(f) = %ac fjozox(t) e 2t g o %acf:)ox(t) o2+ gy

and

X(f) = [ “x(t)e ¥ dt
we have that

Xa(f)Z%acX(f—fc) T %acX(ch)
—— G

Fourier Fourier
transfer transfer
of x(t) of x(¢t)
shifted right shifted left
in frequency in frequency
by f. by f.

24

(de Silva’s Equation 2.76)



What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

From
X,(f) = —a X(f—f) + —a X(f+ 1) (de Silva’s Equation 2.76)
if
x(t) = acos 2nxf,t | X ()] 4
a
AWANA [
\,/ \/ \/ T : I )
multiply by a,./2 multiply by a,./2
and and
then shift left by £, shift right by £,
X, (t) = aa, cos 2nf,t cos 2xf,t | Xa|(N)] 4
N\ N\ N\ N\ N\ aaC
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What does x,(t) = x(t) x.(¢t) look like, in the frequency domain?

From
X,(f) = —a X(f—f) + —a X(f+ 1) (de Silva’s Equation 2.76)
if

2D A [ XOI

M -
\/ \/\Time t, —f 0 5 Freql,lency f

multiply by a_/2 multiply by a_/2
then and and
shift left by f, shift right by f.
X (t) = x(t)a, cos 2nf,t | Xa (f)l 4

i A

1s very sketchy
wv ) t  —f—fy, —f, —f4fy Of—~fy f. fotfy
1}
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About Demodulation

If we take

X5 (t) = x(t)a, cos 2nf,t

L,

| Xa ()]

Ma,

2

/[ \

[\,

ww B t —f—f,

o/

and multiply it by 2/a,, and then sum the left-shiffed-

of the multiplied signal, the resulting signal will pe

multiply by 2/a,
and

—f, —f+fy O f—thy

fo fo+fp

multiply by 2/a,

A and
shift left by f, shift right by f,
x(t)=7? -
A
? 2l
t -2f, —f 0 5 2f, Frequency f
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If we take

About Demodulation

X, (1) = x(Ya, cos 27f.t | Xa (F)]

L

Il

multiply it by 2/a,, and then sum the left-shifted-by-f. and right-shifted by f,. versions
of the multiplied signalf the resulting signal will be

Mac

/v\_/\.’\,,

) t  —f—fy —f, —ftfy Of—~fy f, fothy

How to do this?

t -2f, —f 0 5 2f, Frequency f
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Amplitude Modulation

Modulating x(t)
input

(data)

Multiplier

/\ A
T T T o—
Carrier
signal O——

Demodulation

Modulated
signal

Multiplier

Xq(t) = x(t) x(¢)

Original signal

X.(t) = a.cos2rnf.t

Recall that:

X |

~/p 0 Jo

>
Frequency f

A

x(t)
Low-pass

filter

>

This does it!

Carrier
2 C
—-cos 2nf .t

c

Cutoff=f,

Output of ideal
low-pass filter
with cutoff

frequency f, will
be x(t)!

-2f. Frequency f
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AM Radio

Amplitude Modulation Modulated Demodulation

signal

1
Modulating x(t) (
input Multiplier
(data) PR

£\ )

VAN
| \J " o— X,(t) = x(t) x.(t) o
Original signal
Carrier ><)ut ~ ~ x(t) B x(t)
signal oO— ' Out > ow—pass >
Carrier filter
o—

2
x.(t) = a.cos2nf.t a_CCOS 2nf .t

S~

=

Multiplier

Cutoftf=f,

What conditions guarantee that the above demodulation scheme will recover x(t) exactly?

f, is the highest frequency in x(t).

fc >fb

The low-pass filter is an ideal low pass filter.
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