Analog Filters

Figure 2.19
<u>Ideal</u> filter characteristics: (a) Low-pass filter. (b) High-pass filter. (c) Band-pass filter. (d) Band-reject (notch) filter.

passive first-order low-pass filter

Mechanical analogy

$$T = \frac{B}{K}$$

Figure 2.21 (a) A single-pole active low-pass filter (b) the frequency response characteristic.

We will show that:

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{\tau_1 \tau_2 s^2 + (\tau_2 + \tau_3)s + 1}$$

$$= \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

$$\tau_{1} = R_{1}C_{1} \qquad \tau_{2} = R_{2}C_{2} \qquad \tau_{3} = R_{1}C_{2}$$

$$\omega_{n} = \frac{1}{\sqrt{\tau_{1}\tau_{2}}} \qquad \zeta = \frac{\tau_{2} + \tau_{3}}{2\sqrt{\tau_{1}\tau_{2}}}$$

Node equations for A and B yield:

$$\frac{v_i - v_A}{R_1} + C_1 \frac{d}{dt} (v_o - v_A) = \frac{v_A - v_B}{R_2} = C_2 \frac{dv_B}{dt}$$

(1)

Voltage follower yields:

$$v_B = v_o \tag{2}$$

From (1), using (2),

$$\frac{v_i - v_A}{R_1} + C_1 \frac{d}{dt} (v_o - v_A) = \frac{v_A - v_0}{R_2} = C_2 \frac{dv_0}{dt}$$
 (3)

From the rightmost equation in (3)

$$v_A = R_2 C_2 \frac{dv_0}{dt} + v_0 \tag{4}$$

From the leftmost equation in (3), using (4),

$$\left[v_{i} - \left(R_{2}C_{2}\frac{dv_{0}}{dt} + v_{0}\right)\right] + R_{1}C_{1}\frac{d}{dt}\left[v_{o} - \left(R_{2}C_{2}\frac{dv_{0}}{dt} + v_{0}\right)\right] = R_{1}\frac{\left(R_{2}C_{2}\frac{dv_{0}}{dt} + v_{0}\right) - v_{0}}{R_{2}}$$
(5)

Or $v_i = R_1 C_2 \frac{dv_0}{dt} + R_2 C_2 \frac{dv_0}{dt} + v_0 + R_1 C_1 R_2 C_2 \frac{d^2 v_0}{dt^2}$

Or

$$v_i = \tau_3 \frac{dv_0}{dt} + \tau_2 \frac{dv_0}{dt} + v_0 + \tau_1 \tau_2 \frac{d^2 v_0}{dt^2}$$

 $\tau_1 = R_1 C_1$ $\tau_2 = R_2 C_2$ $\tau_3 = R_1 C_2$

Or
$$\frac{V_o(s)}{V_i(s)} = \frac{1}{\tau_1 \tau_2 s^2 + (\tau_2 + \tau_3) s + 1}$$

$$= \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \omega_n = \frac{1}{\sqrt{\tau_1 \tau_2}} \qquad \zeta = \frac{\tau_2 + \tau_3}{2\sqrt{\tau_1 \tau_2}}$$

Figure 2.22 A two-pole low-pass Butterworth filter.

$$\Rightarrow \frac{V_o(s)}{V_i(s)} = \frac{1}{k \left[\tau_1 \tau_2 s^2 + \left((1 - 1/k)\tau_1 + \tau_2 + \tau_3\right) s + 1\right]} = \frac{\omega_n^2}{k \left(s^2 + 2\zeta \omega_n s + \omega_n^2\right)}$$

$$\tau_1 = R_1 C_1 \quad \tau_2 = R_2 C_2 \quad \tau_3 = R_1 C_2 \qquad \omega_n = \frac{1}{\sqrt{\tau_1 \tau_2}}$$

$$k = \frac{R}{R_f} \qquad \zeta = \frac{(1 - 1/k)\tau_1 + \tau_2 + \tau_3}{2\sqrt{\tau_1 \tau_2}}$$

(see de Silva for derivation)

Frequency (log) ω

Figure 2.24 (a) A single-pole high-pass filter (b) frequency response characteristic

 ω_c

(b)

$$i_{\mathcal{C}} = i_{\mathcal{R}} = -i_{\mathcal{R}_f}$$

$$\Rightarrow C \frac{d}{dt} (v_i - v_A) = \frac{v_A}{R} = -\frac{v_o}{R_f}$$

$$\Rightarrow v_A = -\frac{R}{R_f} v_o$$

$$\Rightarrow C \frac{d}{dt}(v_i - v_A) = \frac{v_A}{R} = -\frac{v_o}{R_f}$$

$$\Rightarrow v_A = -\frac{R}{R_f}v_o$$

$$\Rightarrow C \frac{d}{dt}(v_i + \frac{R}{R_f}v_o) = -\frac{v_o}{R_f}$$

$$\Rightarrow C \frac{dv_i}{dt} = -\frac{RC}{R_f} \frac{dv_o}{dt} - \frac{v_o}{R_f}$$

$$\Rightarrow \frac{R_f}{R}RC \frac{dv_i}{dt} = -RC \frac{dv_o}{dt} - v_o$$

$$\Rightarrow \frac{V_o(s)}{V_i(s)} = -\frac{R_f}{R} \frac{\tau s}{\tau s + 1}$$

$$\tau = RC$$

(see de Silva for derivation)

Figure 2.25 (a) An active band-pass filter

(b) Frequency response characteristic

 $\omega_{c1} \ \omega_r \ \omega_{c2}$

Magnitude

(b)

(see de Silva for derivation)

 $k_1 = \frac{R_2}{R_1}$ $k_2 = \frac{R_2}{R_3}$

Figure 2.26 (a) A resonance-type narrow band-pass filter (b) frequency response characteristic

Frequency ω

Figure 2.27 (a) A twin T filter circuit

(b) Frequency response characteristic

(see de Silva for derivation)

a.k.a. a *band-reject* or *notch* filter

Signal Modulation

FIGURE 2.28 (a) Modulating signal (data signal), (b) amplitude-modulated (AM) signal, (c) frequency-modulated (FM) signal, (d) pulse-width-modulated (PWM) signal, and (e) pulse-frequency-modulated (PFM) signal.

AM Radio

Amplitude Modulation

Why amplitude modulate radio signals?

- 1. The sum of the modulated signals from multiple radio stations can be broadcast over long distances.
- 2. It is relatively easy to recover one radio station's data signal, x(t), from the sum of the modulated signals from multiple radio stations.

AM Radio

What conditions guarantee that above demodulation scheme recovers x(t) exactly?

How did somebody come up with the above scheme?

AM Radio

Amplitude Modulation

What does $x_a(t) = x(t) x_c(t)$ look like, in the frequency domain?

The Fourier transform, $X_a(j\omega)$, of $x_a(t)$, is:

$$X_a(j\omega) = \int_{-\infty}^{+\infty} x_a(t) e^{-j\omega t} dt$$

where ω is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

$$X_a(f) = \int_{-\infty}^{+\infty} x_a(t) e^{-j2\pi f t} dt$$

where *f* is the frequency in cycles/sec.

AM Radio

Amplitude Modulation

The Fourier transform, $X_a(j\omega)$, of $x_a(t)$, is:

$$X_a(j\omega) = \int_{-\infty}^{+\infty} x_a(t) e^{-j\omega t} dt$$

where ω is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

$$X_a(f) = \int_{-\infty}^{+\infty} x_a(t) e^{-j2\pi f t} dt$$

where *f* is the frequency in cycles/sec.

Here

$$x_a(t) = x(t)x_c(t) = x(t)a_c\cos(2\pi f_c t)$$

From Euler's formulas,

$$\cos(\omega_c t) = \frac{e^{j\omega_c t} + e^{-j\omega_c t}}{2}$$

where ω_c is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

$$\cos(2\pi f_c t) = \frac{e^{j2\pi f_c t} + e^{-j2\pi f_c t}}{2}$$

where f_c is the frequency in cycles/sec.

$$x_a(t) = x(t)x_c(t) = x(t)a_c\cos(2\pi f_c t)$$

The Fourier transform, $X_a(j\omega)$, of $x_a(t)$, is:

$$X_a(j\omega) = \int_{-\infty}^{+\infty} x_a(t) e^{-j\omega t} dt$$

where ω is the frequency in radians/sec.

Or we can choose to measure frequency in cycles/sec, and write the above as

$$X_a(f) = \int_{-\infty}^{+\infty} x_a(t) e^{-j2\pi f t} dt$$

where *f* is the frequency in cycles/sec.

Here

$$x_a(t) = x(t)x_c(t) = x(t)a_c\cos(2\pi f_c t)$$

Now from

using
$$X_a(f)=\int_{-\infty}^{+\infty}x_a(t)e^{-j2\pi ft}\,dt$$

$$x_a(t)=x(t)x_c(t)=x(t)a_c\cos(2\pi f_c\,t)$$
 and
$$\cos(2\pi f_c t)=\frac{e^{j2\pi f_c t}+e^{-j2\pi f_c t}}{2}$$

we have that

$$\begin{split} X_a(f) &= \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) \Big[e^{j2\pi f_c t} + e^{-j2\pi f_c t} \Big] e^{-j2\pi f t} dt \\ &= \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) \Big[e^{-j2\pi (f - f_c)t} + e^{-j2\pi (f + f_c)t} \Big] dt \\ &= \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) e^{-j2\pi (f - f_c)t} dt + \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) e^{-j2\pi (f + f_c)t} dt \end{split}$$

Now from

using
$$X_a(f)=\int_{-\infty}^{+\infty}x_a(t)e^{-j2\pi ft}\,dt$$

$$x_a(t)=x(t)x_c(t)=x(t)a_c\cos(2\pi f_c\,t)$$
 and
$$\cos(2\pi f_c t)=\frac{e^{j2\pi f_c t}+e^{-j2\pi f_c t}}{2}$$

we have that

$$\begin{split} X_a(f) &= \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) \Big[e^{j2\pi f_c t} + e^{-j2\pi f_c t} \Big] e^{-j2\pi f t} dt \\ &= \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) \Big[e^{-j2\pi (f - f_c)t} + e^{-j2\pi (f + f_c)t} \Big] dt \\ &= \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) e^{-j2\pi (f - f_c)t} dt + \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) e^{-j2\pi (f + f_c)t} dt \end{split}$$

Finally, using

$$X_a(f) = \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) e^{-j2\pi(f-f_c)t} dt + \frac{1}{2} a_c \int_{-\infty}^{+\infty} x(t) e^{-j2\pi(f+f_c)t} dt$$

and

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt$$

we have that

$$X_a(f) = \frac{1}{2}a_c \underbrace{X(f - f_c)}_{} + \underbrace{\frac{1}{2}a_c}_{} \underbrace{X(f + f_c)}_{}$$
 (de Silva's Equation 2.76)

Fourier Fourier transfer of $x(t)$ of $x(t)$ shifted $right$ in frequency by f_c by f_c

From

$$X_a(f) = \frac{1}{2}a_c X(f - f_c) + \frac{1}{2}a_c X(f + f_c)$$
 (de Silva's Equation 2.76)

if

then

A. Alle Alle Alle Alle

From

$$X_a(f) = \frac{1}{2}a_c X(f - f_c) + \frac{1}{2}a_c X(f + f_c)$$
 (de Silva's Equation 2.76)

if |X(f)| $-f_b$ Frequency f0 multiply by $a_c/2$ and shift left by f_c multiply by $a_c/2$ and then shift right by f_c $x_{\rm a}(t) = x(t)a_{\rm c}\cos 2\pi f_{\rm c}t$

About Demodulation

If we take

About Demodulation

If we take

How to do this?

and multiply it by $2/a_c$, and then sum the left-shifted-by- f_c and right-shifted by f_c versions of the multiplied signal the resulting signal will be

AM Radio

What conditions guarantee that the above demodulation scheme will recover x(t) exactly?

 f_b is the highest frequency in x(t).

$$f_c > f_b$$

The low-pass filter is an ideal low pass filter.