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Time-Domain Performance Specifications for Response to Unit Step Command
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Response parameters for time-domain specification of performance.



TABLE 3.1

Time-Domain Performance Parameters Using the Simple Oscillator Model

Performance Parameter
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[llustration of gain and phase margins. (a) A feedback system. (b) Bode diagram.
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3.5.1 Rating Parameters

Typical rating parameters provided by instrument manufacturers and vendors (in their data
sheets) are as follows:

1. Sensitivity and sensitivity error

. Signal-to-noise ratio

. Dynamic range

. Resolution

. Offset or bias

. Linearity

. Zero drift, full-scale drift, and calibration drift (Stability)
. Useful frequency range

. Bandwidth

10. Input and output impedances

O 00 ~J OO Ul W W I

We have already discussed the meaning and significance of some of these terms. In this
section, we look at the conventional definitions given by instrument manufacturers
and vendors.

Sensitivity of a device (e.g., transducer) is measured by the magnitude (peak, rms value,
etc.) of the output signal corresponding to unit input (e.g., measurand). This may be
expressed as the ratio of incremental output and incremental input (e.g., slope of a data
curve) or, analytically, as the corresponding partial derivative. In the case of vectorial or

tensorial signals (e.g., displacement, velocity, acceleration, strain, force), the direction of
sensitivity should be specified.



y (output)

~y(x)
Ay . d
Ax Sensitivity(x) = d—i
x*  x(input) Ay

Sensitivity(x)‘x oA
= X

Sensitivity of a device (e.g., transducer) is measured by the magnitude (peak, rms value,

etc.) of the output signal corresponding to unit input (e.g., measurand). This may be
expressed as the ratio of incremental output and incremental input (e.g., slope of a data

curve) or, analytically, as the corresponding partial derivative. In the case of vectorial or

tensorial signals (e.g., displacement, velocity, acceleration, strain, force), the direction of
sensitivity should be specified.




Sensitivity of a device (e.g., transducer) is measured by the magnitude (peak, rms value,
etc.) of the output signal corresponding to unit input (e.g., measurand). This may be
expressed as the ratio of incremental output and incremental input (e.g., slope of a data
curve) or, analytically, as the corresponding partial derivative. In the case of vectorial or
tensorial signals (e.g., displacement, velocity, acceleration, strain, force), the direction of
sensitivity should be specified.

Dynamic range of an instrument is determined by the allowed lower and upper limits of
its input or output (response) so as to maintain a required level of output accuracy. This
range is usually expressed as a ratio (e.g., a log value in decibels). In many situations, the
lower limit of dynamic range is equal to the resolution of the device. Hence, the dynamic
range (ratio) is usually expressed as (range of operation)/(resolution) in dB.

Resolution of an input-output instrument is the smallest change in a signal (input) that
can be detected and accurately indicated (output) by a transducer, a display unit, or any
pertinent instrument. It is usually expressed as a percentage of the maximum range of the
instrument or as the inverse of the dynamic range ratio. It follows that dynamic range and
resolution are very closely related.




Instrument Bandwidth Example
(Example 3.9)
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Dial

reading Transfer function:
80

Pointer \’*A\\ @0 (S) L b b/k T

Q.(s)  bs+k B (b/k)s+1 B 7s+1
. N Static Gain = 7
Shaft speed o i -:=' The half power bandwidth is the lowest frequency
2 at which the gain of the transfer function drops to

Viscous 1/4/2 times its static gain.
fluid (b)

Torsional

spring (k) Let

w,,, = the half power bandwidth

Assumption: The power in via the rotating

shaft goes into (1) friction losses between the Then
rotating cylinder and the fluid, and (2) the staticgain 7 _ T ‘
potential energy stored in the torsional J2 J2 T(jwy, ) +1
spring: Lo _

b(w, —d,) = ko, V2w, P+ 12

.

Because 20 log [—] ~ —3 the “half power bandwidth” is also referred to as the “—3 db bandwidth”.

| |
~ Torque on case due to torsional spring 1

Torque on case due to fluid friction = W = -

J2
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Aliasing

Signal 1

Time (s)

Sampling rate fs =1 sample /s



Aliasing

Signal
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spectrum
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A simple illustration of aliasing: (a) two harmonic signals with identical sampled data. (b) frequency spectra of
the two harmonic signals.
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if the system is linear, the response y

can be described by
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® From Prof. Garbini’s “Notes on discrete-time systems” (on Canvas site)
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Frequency Response of Continuous-Time Systems

u(t)——H(s) —— y(1)

If u(t)=sin(wt) then, in the steady state,
)
RelT0)

“Frequency Response Function”

Im[

y(t)=(H(jw)]| sin{wt +tan"'

In words: The response of a linear system, with transfer function H(s), in the steady-state, to the input
sin(wt), will be a sine wave of the same frequency as the input sine wave.

The amplitude gain of the steady-state output sine wave relative to the input sine wave and
the phase lead angle of the steady-state output sine wave relative to the input sine wave are
easy to predict using the “frequency response function” H(jw).



Frequency Response of Discrete-Time Systems

k
u(t) N u) N H(z) —> y(k)
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If u(t)=sin(wt), then u(k)=sin(wkAT), for k=0,1,2,..., and, in the steady state,
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The frequency response of a discrete-time system is a periodic function

“Frequency Response Function”

of the frequency w, with period 27 / AT, because
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A graphical look at e//=
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Generating Frequency Response Data Points
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Generating Frequency Response Data Points

S~
~ao

y(k) :‘H(ej“’AT)‘ sin-

wk AT +tan™?

1

Im[H(efwM)] |

Re[H(ej“’AT)}

Real Part



Generating Frequency Response Data Points
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Frequency Response of Discrete-Time Systems

/-\ k
u(t) N\ u) N H(z) —> y(k)

‘ AT ‘k:O, 1, 2, ...
Responsibility for the periodicity lies here!

If u(t)=sin(wt), then u(k)=sin(wkAT), for k=0,1,2,..., and, in the steady state,
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The frequency response of a discrete-time system is a periodic function

of the frequency w, with period because
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50 Bode of Y/U Transfer Functions (T=1.00e—02 sec)
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Reference
Input

—>

Closed-Loop Control System

Digital
Controller

—> Actuator

T

>

Plant

——> Output

Sensor

Can Digital Controller filter out the sensor noise?

Practically impossible if sensor noise frequencies above Nyquist frequency!

solution: add an “antialiasing filter” L

to remove high-frequency noise:

Analog le

Filter

Antialiasing
Filter Noise
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3.7.1 Sampling Theorem

If a time signal x(t) is sampled at equal steps of AT, no information regarding its frequency
spectrum X( f) is obtained for frequencies higher than f. = 1/(2AT). This fact is known as
Shannon’s sampling theorem, and the limiting (cutoff) frequency is called the Nyquist
frequency.

It can be shown that the aliasing error is caused by folding of the high-
frequency segment of the frequency spectrum beyond the Nyquist frequency into the

low-frequency segment.

u(t) N\ > y(k)
Al k=0,1,2,..
T . .
L The Nyquist Frequency in Hertz —— = The Nyquist Frequency in rad/sec

2AT AT
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Aliasing distortion of a frequency spectrum. (a) Original spectrum. (b) Distorted spectrum due to aliasing.
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Conversely, if the
continuous-time signal has
no frequency content above

the Nyquist frequency, then
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Aliasing distortion of a frequency spectrum. (a) Original spectrum. (b) Distorted spectrum due to aliasing.
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