Aliasing example

The signal $\cos (2 \pi f t)$ is sampled at $\Delta T=1$ sample/s to produce the sampled signal $\cos (2 \pi f k)$ (that is, $t=k \Delta T$, for $k=\ldots,-2,-1,0,1,2, \ldots)$. What frequencies f are aliased to $\cos \left(2 \pi f_{1} k\right)$ for $f_{1}=0.2 \mathrm{~Hz}$?

$$
\cos \left(2 \pi\left(f_{1}+n\right) k\right)=\cos \left(2 \pi f_{1} k\right) \text { for } n=\ldots,-2,-1,0,1,2, \ldots \quad \Rightarrow f= \pm f_{1}+n \text { for } n=\ldots,-2,-1,0,1,2, \ldots
$$

$$
= \pm 0.2+n \text { for } n=\ldots,-2,-1,0,1,2, \ldots
$$

$$
= \pm f_{1}+n / \Delta T \text { in general }
$$


```
17. DigitalLowPassFilterPtbyPt.vi Block Diagram
```


Lab 3 low-pass filter

It implements the transfer function

or, equivalently, it solves the corresponding differential equation

$$
\frac{d^{2} y}{d t^{2}}+2 \zeta \omega_{n} \frac{d y}{d t}+\omega_{n}^{2} y(t)=\omega_{n}^{2} u(t)
$$

for the output signal $y(t)$ in real time.

oard, and electrical components from the ;, the low-pass filter diagrammed below.
circuit, choose:
${ }^{6} \mathrm{~F} \quad C_{2}=0.470 \times 10^{-6} \mathrm{~F}$
ise resistances of your two resistors and rcuit with a voltage follower.
uit with another voltage follower.

$$
\begin{gathered}
\frac{V_{o}(s)}{V_{i}(s)}=\frac{1}{\tau_{1} \tau_{2} s^{2}+\left(\tau_{2}+\tau_{3}\right) s+1} \\
=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
\tau_{1}=R_{1} C_{1} \quad \tau_{2}=R_{2} C_{2} \quad \tau_{3}=R_{1} C_{2} \\
\omega_{n}=\frac{1}{\sqrt{\tau_{1} \tau_{2}}}=\frac{1}{\sqrt{R_{1} C_{1} R_{2} C_{2}}} \\
\zeta=\frac{\tau_{2}+\tau_{3}}{2 \sqrt{\tau_{1} \tau_{2}}}=\frac{\left(R_{1}+R_{2}\right) C_{2}}{2} \omega_{n}
\end{gathered}
$$

It implements a transfer function

$$
u(k) \longrightarrow \frac{\frac{b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+b_{0}}{z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}}}{n \geq m} \rightarrow y(k)
$$

or, equivalently, it solves the corresponding difference equation

$$
\begin{aligned}
& y(k)+a_{n-1} y(k-1)+\cdots+a_{0} y(k-n) \\
& \quad=b_{m} u(k-(n-m))+b_{m-1} u(k-(n-m)-1)+\cdots+b_{0} u(k-n)
\end{aligned}
$$

for the output signal $y(k)$ in real time.

