Aliasing example

The signal $\cos(2\pi ft)$ is sampled at $\Delta T = 1$ sample/s to produce the sampled signal $\cos(2\pi fk)$ (that is, $t = k\Delta T$, for k = ..., -2, -1, 0, 1, 2, ...). What frequencies f are aliased to $\cos(2\pi f_1 k)$ for $f_1 = 0.2$ Hz?

$$\cos(2\pi(f_1+n)k) = \cos(2\pi f_1 k)$$
 for $n = ..., -2, -1, 0, 1, 2, ...$ $\Rightarrow f = \pm f_1 + n$ for $n = ..., -2, -1, 0, 1, 2, ...$ $= \pm 0.2 + n$ for $n = ..., -2, -1, 0, 1, 2, ...$ $= \pm f_1 + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/\Delta T$ in general $\Rightarrow f = \pi + n/$

Lab 3 low-pass filter

It implements the transfer function

$$u(t) \longrightarrow \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \longrightarrow y(t)$$

or, equivalently, it *solves* the corresponding differential equation

$$\frac{d^2y}{dt^2} + 2\zeta \,\omega_n \frac{dy}{dt} + \omega_n^2 \,y(t) = \omega_n^2 u(t)$$

for the output signal y(t) in real time.

Input V_i C_1 C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_3 C_4 C_4 C_5 C_6 C_7 C_8 C_8

What does this circuit do?

oard, and electrical components from the 5, the low-pass filter diagrammed below.

r circuit, choose:

$$^{-6} \, \mathrm{F} \quad C_2 = 0.470 \times 10^{-6} \, \mathrm{F}$$

ise resistances of your two resistors and

rcuit with a voltage follower.

uit with another voltage follower.

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{\tau_1 \tau_2 s^2 + (\tau_2 + \tau_3)s + 1}$$

$$= \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

$$\tau_{1} = R_{1}C_{1} \qquad \tau_{2} = R_{2}C_{2} \qquad \tau_{3} = R_{1}C_{2}$$

$$\omega_{n} = \frac{1}{\sqrt{\tau_{1}\tau_{2}}} = \frac{1}{\sqrt{R_{1}C_{1}R_{2}C_{2}}}$$

$$\zeta = \frac{\tau_{2} + \tau_{3}}{2\sqrt{\tau_{1}\tau_{2}}} = \frac{(R_{1} + R_{2})C_{2}}{2} \omega_{n}$$

