Analog Sensors and Transducers

Chapter 5

ME 473

Professor Sawyer B. Fuller

typical sensing process

Different types of motion transduction

Resistive transducers
potentiometer

Rotary Potentiometer

Assuming a uniform coil, one has

$$
\begin{equation*}
R_{\theta}=\frac{\theta}{\theta_{\max }} R_{C} \tag{5.2}
\end{equation*}
$$

where R_{C} is the total resistance of the potentiometer coil. The current balance at the sliding contact point (node 2) gives

$$
\begin{equation*}
\frac{v_{r e f}-v_{o}}{R_{c}-R_{\theta}}=\frac{v_{o}}{R_{\theta}}+\frac{v_{o}}{R_{L}} \tag{5.3}
\end{equation*}
$$

where R_{L} is the load resistance. Multiply Equation 5.3 throughout by R_{C} and use Equation 5.2. We get, $\left(v_{r e f}-v_{o}\right) /\left(1-\theta / \theta_{\max }\right)=\left(v_{o} /\left(\theta / \theta_{\max }\right)\right)+\left(v_{o} /\left(R_{L} / R_{C}\right)\right)$. By using straightforward algebra, we have

$$
\begin{equation*}
\frac{v_{o}}{v_{\text {ref }}}=\left[\frac{\left(\theta / \theta_{\max }\right)\left(R_{L} / R_{C}\right)}{\left(R_{L} / R_{C}+\left(\theta / \theta_{\max }\right)-\left(\theta / \theta_{\max }\right)^{2}\right)}\right] \tag{5.4}
\end{equation*}
$$

Figure 5.5(b) A rotary potentiometer with a resistive load.
input impedance of the device
that measures θ.

Rotary Potentiometer

Figure $\mathbf{5 . 5 (b)}$ A rotary potentiometer with a resistive load.
input impedance of the device \qquad that measures θ.

Figure 5.6 Electrical loading nonlinearity in a potentiometer.

$$
\frac{v_{o}}{v_{r e}}=\left[\frac{\left(\theta / \theta_{\text {max }}\right)\left(R_{L} / R_{C}\right)}{\left(R_{L} / R_{C}+\left(\theta / \theta_{\text {max }}\right)-\left(\theta / \theta_{\text {max }}\right)^{2}\right)}\right]
$$

Options for managing the loading nonlinearity:

- Choose a display device with sufficiently high R_{L}
- Calibrate the display device to account for the nonlinearity

Figure 5.7
(a) An optical potentiometer.
(b) Equivalent circuit ($\alpha=x / L$).

Variable-Inductance Transducers

- Principle of operation: A voltage is produced in response to changes in a magnetic field caused by physical motion
- Benefit: no physical contact
- Examples
- Linear variable displacement transducers
- Rotational variable displacement transducers
- Mutual induction proximity sensors
- Resolvers
- Permanent-magnet transducers

ferromagnetic | ,ferō,mag'netik |

adjective Physics
(of a body or substance) having a high susceptibility to magnetization, the strength of which depends on that of the applied magnetizing field, and that may persist after removal of the applied field. This is the kind of magnetism displayed by iron and is associated with parallel magnetic alignment of neighboring atoms.

Figure 5.10
LVDT. (a) A commercial unit (Scheavitz Sensors, Measurement Specialties, Inc. With permission). (b) Schematic diagram. (c) A typical operating curve.

Operating Principal

AC voltage in primary coil generates, by mutual induction, an ac voltage of
same frequency in secondary coil.

$$
\begin{gathered}
v_{o}=\mathrm{AC} \text { Voltage } \\
v_{o}
\end{gathered}
$$

(a) Core
x
(measurand)

Figure 5.10
LVDT. (a) A commercial unit (Scheavitz Sensors, Measurement Specialties, Inc. With permission). (b) Schematic diagram. (c) A typical operating curve.

Figure 5.15
(a) Schematic diagram of an RVDT. (b) Operating curve.

Figure 5.16
(a) Schematic diagram of a mutual-induction proximity sensor. (b) Operating curve.

self-induction proximity sensor

FIGURE 5.18 Schematic diagram of a self-induction proximity sensor.

Resolver

Output

The rotor is attached to the object whose angular position θ is to be measured.

The stator (fixed portion of the sensor) includes twø pairs of windings placed 90 apart.

The induced voltage in this pair of windings is

$$
v_{o 1}=a v_{r e f} \cos \theta
$$

where a is a constant determined by geometric and material properties.

The induced voltage in the other pair of windings is

$$
v_{o 2}=a v_{r e f} \sin \theta
$$

Schematic diagram of a resolver.

5.4.4.1 Demodulation

For differential transformers (i.e., LVDT and RVDT), the displacement signal (transient) from a resolver can be extracted by demodulating its (modulated) outputs. As usual, this is accomplished by filtering out the carrier signal, thereby extracting the modulating signal (which is the displacement signal). The two output signals $v_{o 1}$ and $v_{o 2}$ of a resolver are termed quadrature signals. Suppose that the carrier (primary) signal is

$$
\begin{equation*}
v_{r e f}=v_{a} \sin \omega t \tag{5.21}
\end{equation*}
$$

Then from Equations 5.19 and 5.20, the induced quadrate signals are $v_{o 2}=a v_{a} \cos \theta \sin \omega t$ and $v_{o 2}=$ $a v_{a} \sin \theta \sin \omega t$. Multiplying these equations by $v_{r e f}$, we get

$$
v_{m 1}=v_{o 1} v_{r e f}=a v_{a}^{2} \cos \theta \sin ^{2} \omega t=\frac{1}{2} a v_{a}^{2} \cos \theta[1-\cos 2 \omega t]
$$

$$
v_{m 2}=v_{o 2} v_{r e f}=a v_{a}^{2} \sin \theta \sin ^{2} \omega t=\frac{1}{2} a v_{a}^{2} \sin \theta[1-\cos 2 \omega t]
$$

Provided the carrier frequency ω is at least 10 times the maximum frequency of interest in
Sinee the earrier frequeney whouldbeabout 10 times the masimum frequeney entent of interest in the angular displacement θ, one can use a low-pass filter with a cutoff set at $\omega / 10$ to remove the carrier components in $v_{m 1}$ and $v_{m 2}$. This gives the demodulated outputs:

$$
\begin{align*}
& v_{f 1}=\frac{1}{2} a v_{a}^{2} \cos \theta \tag{5.22}\\
& v_{f 2}=\frac{1}{2} a v_{a}^{2} \sin \theta \tag{5.23}
\end{align*}
$$

Note that Equations 5.22 and 5.23 provide both $\cos \theta$ and $\sin \theta$, and hence the magnitude and the sign of θ.

Permanent Magnet DC Transducers

Rectilinear velocity sensor:

From Physics:
The velocity of a coil of wire in a magnetic field induces a voltage across the coil that is proportional to the velocity.

Angular velocity sensor: (tachometer)

DC voltage v_{f} results in current i_{f} that, via the field windings (L_{f}), generates the magnetic field in which the rotor turns.

Figure 5.20
A dc tachometer example. (a) Equivalent circuit with an impedance load; (b) Armature free-body diagram.
Under what conditions does this device function as an ideal tachometer: $v_{o}=K \omega_{i}$?

(b)

Assumption: v_{f} is constant
Loop equation for output side:

$$
v_{o}=v_{g}-R_{a} i_{o}-L_{a} \frac{d i_{o}}{d t}
$$

Motor transformer equations:
$v_{\text {rotor }}=K \omega_{\text {rotor }} \quad \Leftrightarrow \quad v_{g}=K \omega_{i} \quad$ Newton's law applied to rotary inertia:
$\underbrace{i_{\text {rotor }}=-\frac{1}{K} T_{\text {rotor }}} \Leftrightarrow \underbrace{T_{g}=\underbrace{K i_{0}}} \quad J \frac{d \omega_{i}}{d t}=T_{i}-T_{g}-b \omega_{i}\}$
ME 374
Sec. 5.5.1.2
Notation

Substitute $T_{g}=K i_{0}$
to get $I_{0}(s)$ equation
below.
Then use result to eliminate i_{0} from above equation to get $V_{o}(s)$ equation below.

$$
\Rightarrow\left[\begin{array}{c}
V_{o}(s) \\
I_{o}(s)
\end{array}\right]=\left[\begin{array}{cc}
K+\left(L_{a} s+R_{a}\right)(J s+b) / K & -\left(L_{a} s+R_{a}\right) / K \\
-(J s+b) / K & 1 / K
\end{array}\right]\left[\begin{array}{c}
\Omega_{i}(s) \\
T_{i}(s)
\end{array}\right]
$$

$\tau_{e}=L_{a} / R_{a}$ (Electrical time constant)
$\tau_{m}=J / b \quad$ (Mechanical time constant)

Variable-Capacitance Transducers

Parallel-plate capacitor:

$$
i_{C}=\frac{d q_{c}}{d t}=\frac{d\left(C v_{c}\right)}{d t} \Leftrightarrow q_{c}(t)=C(t) v_{c}(t)=\int_{-\infty}^{t} i_{C}(\lambda) d \lambda
$$

