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Different types of motion transduction
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Rotary Potentiometer

Assuming a uniform coil, one has

R9= 9

Bmax

(5.2)

where R is the total resistance of the potentiometer coil. The current balance at the sliding contact point

(node 2) gives

Vref L _

R.—Ry Ry R,

(5.3)

where R, is the load resistance. Multiply Equation 5.3 throughout by R and use Equation 5.2. We get,
(Vyes = V)1 = 0/8,,,,) = (v,/(0/0,,,,)) + v,/(R,/R.)). By using straightforward algebra, we have

v ref

Figure 5.5(b) A rotary potentiometer with a resistive load.

input impedance of the device
that measures 6.

Vo — (e/emax )(RL /RC )
(RL /RC + (e/gmax ) - (e/emax )2)

} (5.4)



Rotary Potentiometer
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Figure 5.5(b) A rotary potentiometer with a resistive load. of
Options for managing the loading nonlinearity:
input impedance of the device e Choose a display device with sufficiently high Ry,

that measures 0. e Calibrate the display device to account for the nonlinearity




Practically an electrical insulator where no light projects on it.
Develops a resistance Rp where light projects on it.
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Figure 5.7
(a) An optical potentiometer.
(b) Equivalent circuit (« = x/L).



Variable-Inductance Transducers

® Principle of operation: A voltage is produced in response to changes in a magnetic field
caused by physical motion
® Benefit: no physical contact
® Examples
® Linear variable displacement transducers
® Rotational variable displacement transducers
® Mutual induction proximity sensors
® Resolvers

® Permanent-magnet transducers



ferromagnetic | ferd mag netik |

adjective Physics
(of a body or substance) having a high susceptibility to
magnetization, the strength of which depends on that of the

applied magnetizing field, and that may persist after removal
of the applied field. This is the kind of magnetism displayed
by iron and 1s associated with parallel magnetic alignment of
neighboring atoms.
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LVDT. (a) A commercial unit (Scheavitz Sensors, Measurement Specialties, Inc. With permission). (b) Schematic

diagram. (c) A typical operating curve.



Monolithic
- circuit

Operating Principal
AC voltage in primary coil generates,

by mutual induction, an ac voltage of
same frequency in secondary coil.
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LVDT. (a) A commercial unit (Scheavitz Sensors, Measurement Specialties, Inc. With permission). (b) Schematic
diagram. (c) A typical operating curve.
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(a) Schematic diagram of an RVDT. (b) Operating curve.
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(a) Schematic diagram of a mutual-induction proximity sensor. (b) Operating curve.




self-induction proximity sensor
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FIGURE 5.18 Schematic diagram of a self-induction proximity sensor.
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The rotor is attached to the object
whose angular position 6 is to be

measured.

The stator (fixed portion of the
sensor) includes twg pairs of
windings placed 90 apart.

The induced voltage in this pair of
windings is

Vol = d Vref COS 0
where a is a constant determined by
geometric and material properties.

The induced voltage in the other pair
of windings is
Vo2 = d Vref Sin 6

Schematic diagram of a resolver.
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5.4.4.1 Demodulation

For differential transformers (i.e., LVDT and RVDT), the displacement signal (transient) from a resolver
can be extracted by demodulating its (modulated) outputs. As usual, this is accomplished by filtering
out the carrier signal, thereby extracting the modulating signal (which is the displacement signal).
The two output signals v, and v,, of a resolver are termed quadrature signals. Suppose that the carrier
(primary) signal is

Vyef =V, SIN O 5.21
/ should be v41 .21

Then from Equations 5.19 and 5.20, the induced quadrate signals are v, = av, cos 0 sin ot and v,, =

av, sin 0 sin wt. Multiplying these equations by v,, we get Product is
N2 \I, high-frequency

. 1
Vinl = VoiVrer = avi cosOsin® ot = —av’ cosO[1 — cos2mt] compared to cos ¢
! 2

A 1 .
Vma = VorVeef =V, sinBsin’ ot = Eavﬁ sinO[1 — cos2wt]

Provided the carrier frequency w is at least 10 times the maximum frequency of interest in

the angular displacement 6, one can use a low-pass filter with a cutoff set at w/10 to remove the carrier
and v,,,. This gives the demodulated outputs:

components in v,

Vi = %av,‘f cosB (5.22)
) sin(6)
R 0 \6 (5.23)
Vi = i av, sin cos(0) .

Note that Equations 5.22 and 5.23 provide both cos 6 and sin 0, and hence the magnitude and the

sign of O.




Permanent Magnet DC Transducers
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DC Tachometer
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Damping b

Note: most tachometers consist of more than
(b) one coil, “commutated” so that each is

connected only at a short interval during which

its rotation angle produces maximum voltage

Figure 5.20
A dc tachometer example. (a) Equivalent circuit with an impedance load; (b) Armature free-body diagram.

Under what conditions does this device function as an ideal tachometer: v, = Kw;?
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get Vy(s) equation
below.
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Typically K >> R,b and K >> R,, in which case
provided the highest frequencies in w; and T; are
small compared to min(1/7, 1/7.) and 1/,
respectively.

17 = L./R,; (Electrical time constant) ™ = J/b (Mechanical time constant)
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Variable-Capacitance Transducers

Parallel-plate capacitor:

O A = common (overlapping) area of plates
T I / Measurand can be
(]@ any one of these. Fix

Ve xI k l Ic C= —: _ two of the three, then

measure C to deduce

| the third.
o k = dielectric constant

(depends upon properties
of medium between plates)

. d d(C b
Ic = dzc = (dtUC) & qc(t‘)=C(t‘)vc(t):L/;OO i-(A)dA

21



