

Figure 5.23
Schematic diagrams of capacitive sensors. (a) Capacitive rotation sensor. (b) Capacitive displacement sensor. (c) Capacitive liquid level sensor.

Capacitance Bridge (Sec. 5.6.1.1)

varies similarly to sensor due to changes in

temperature, humidity, etc.

$$Z_i = \frac{1}{C_i s}$$

 Z_2 is *inversely* proportional to C_2

zero current into op-amp inputs gives:

$$(v_{ref} - v) / Z_1 + (v_o - v)Z_2 = 0$$

$$(v_{ref} - v)/Z_3 + (0 - v)Z_4 = 0$$

$$\implies v_o = \frac{(Z_4/Z_3 - Z_2/Z_1)}{1 + Z_4/Z_3} v_{ref}$$

under balanced bridge condition,

$$\frac{Z_1}{Z_2} = \frac{Z_3}{Z_4} \Rightarrow v_o = 0$$

Figure 5.24 A bridge circuit for capacitive sensors.

$$Z_2 \rightarrow Z_2 + \delta Z \quad \Rightarrow \quad \delta v_o = -\frac{v_{ref}}{Z_1(1 + Z_4/Z_3)} \delta Z$$

With the amplitude and frequency of v_{ref} constant, the change in the amplitude of v_o will be *inversely* proportional to the change in the capacitance C_2 .

Circuit to linearize response of a capacitive displacement sensor

$$i_{Cref}(t) = C_{ref} \frac{dv_{Cref}}{dt} = C_{ref} \frac{dv_{ref}}{dt}$$
 (1)

$$i_{\mathcal{C}}(t) = \frac{d(\mathcal{C}v_{\mathcal{C}})}{dt} = \frac{d(\mathcal{C}v_{\mathcal{O}})}{dt} \tag{2}$$

At node A:

$$i_{Cref}(t) + i_{C}(t) = 0$$

$$\Rightarrow \int_{0}^{t} \left[i_{Cref}(\lambda) + i_{C}(\lambda) \right] d\lambda = 0$$

$$\Rightarrow \int_{0}^{t} i_{Cref}(\lambda) d\lambda + \int_{0}^{t} i_{C}(\lambda) d\lambda = 0$$
(3)

From (3), using (1) and (2),

$$\int_{0}^{t} C_{ref} dv_{ref} + \int_{0}^{t} d(Cv_{o}) = 0$$

$$\Rightarrow C_{ref} \Big[v_{ref}(t) - v_{ref}(0) \Big] + \Big[C(t) v_{o}(t) - C(0) v_{o}(0) \Big] = 0$$

problem: change in capacitance due to displacement Δx is nonlinear in Δx :

$$\Delta C = kA \left[\frac{1}{x + \Delta x} - \frac{1}{x} \right]$$

Figure 5.27 Linearizing amplifier circuit for a capacitive transverse displacement sensor.

From (4), provided $v_{ref}(0) = v_o(0) = 0$,

$$\Rightarrow v_o(t) = -\frac{C_{ref} v_{ref}(t)}{C(t)} \Rightarrow v_o(t) = -\frac{C_{ref} v_{ref}(t)}{K} x(t) \iff v_o(t) \text{ is proportional to } x(t)!!$$

$$v_o(t) = -\frac{C_{ref} v_{ref}(t)}{K} x(t)$$

Piezoelectric Sensors

Capacitor fundamentals:

Current =
$$C * Rate of change of voltage$$

$$i_c = C \frac{dv_c}{dt} \Leftrightarrow v_c(t) = \frac{1}{C} \int_{-\infty}^t i_c(\lambda) d\lambda$$

$$i_c = \frac{dq_c}{dt} \quad \Leftrightarrow \quad q_c(t) = \int_{-\infty}^t i_c(\lambda) d\lambda$$

Current = Rate of change of charge

Net charge on capacitor = Net positive charge on positive plate - Net positive charge on negative plate = $C v_c$ = q_c

The Piezoelectric Effect

Some substances generate an electrical charge and an associated potential difference when they are subjected to mechanical stress or strain. This *piezoelectric effect* is used in piezoelectric sensors.

Conversely, piezoelectric materials deform when subject to a potential difference. This is the reverse piezoelectric effect. It is used to create piezoelectric actuators.

Sensitivity of Piezoelectric Crystals

Charge Sensitivity:

$$S_{q} \triangleq \frac{\partial q}{\partial f} = \frac{\Delta \text{charge}}{\Delta \text{force}}$$
$$= \frac{\partial q}{A \partial p} = \frac{\Delta \text{charge}}{A \times \Delta \text{pressure}}$$

Voltage Sensitivity:

$$S_v \triangleq \frac{\partial v}{\partial p} = \frac{\Delta \text{voltage}}{\Delta \text{pressure}}$$
 per unit crystal thickness

Assuming that *C* is a constant

$$q = Cv \implies \delta q = C\delta v$$

and it can be shown that

 $S_q = kS_v$ } Derivation is a forthcoming homework problem where k is the dielectric constant for the crystal.

Table 5.5 Direct Sensitivities of Several Piezoelectric Materials

Material	Charge Sensitivity S_q (pC/N)	Voltage Sensitivity S_v (mV.m/N)
Lead Zirconate Titanate (PZT)	110	10
Barium Titanate	140	6
Quartz	2.5	50
Rochelle Salt	275	90