Strain Gages

5.8.1 Equations for Strain-Gage Measurements

The change of electrical resistance in material when mechanically deformed is the prop-
erty used in resistance-type strain gages. The resistance R of a conductor that has length ¢

and area of cross-section A is given by

¢
R=p, (5.51)

where p denotes the resistivity of the material. Taking the logarithm of Equation 5.51,
we have

logR =logp + log (£/A Fractional change in resistance

Fractional change in resistivity

Now, taking the differential of each teraf, w tai Fractional Change ‘N length /area
dR dp d({/A) (5.52)
R p ” (/A

The first term on the RHS of Equation 5.52 is the fractional change in resistivity, and the
fractional second term represents deformation. It follows that the change in resistance
in the material comes from the change in shape as well as from the change in resistivity of
the material. For linear deformations, the two terms on the RHS of Equation 5.52 are linear
functions of strain g; the proportionality constant of the second term, in particular,
depends on Poisson’s ratio of the material. Hence, the following relationship can be
written for a strain-gage element:

R _

= =S¢ (5.53)

The constant S is known as the gage factor or sensitivity of the strain-gage element. The
numerical value of this parameter ranges from 2 to 6 for most metallic strain-gage
elements and from 40 to 200 for semiconductor strain gages.




Table 5.6
Properties of Common Strain-Gage Material

Gage Factor

Temperature Coefficient
of Resistance (10°/°C)

15

200

20

2000

70 to 700
70 to 700

Material Composition (Sensitivity)
;_8 [ Constantan 45% Ni, 55% Cu 2.0
o ® ) Isoelastic 36% Ni, 52% Fe, 8% Cr, 4% (Mn, Si, Mo) 3.5
£ Z| Karma 74% Ni, 20% Cr, 3% Fe, 3% Al 2.3
5 = | Monel 67% Ni, 33% Cu 1.9
= Silicon p-type 100 to 170
.a Silicon n-type —140 to —100
&
3,
)]

Undesirable characteristics of SC gages include the following:

1. The strain-resistance relationship is more nonlinear.

2. They are brittle and difficult to mount on curved surfaces.

3. The maximum strain that can be measured is one to two orders of magnitude

smaller (typically, less than 0.001 m/m).
4. They are more costly.

5. They have much larger temperature sensitivity.
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(a) Strain-gage nomenclature. (b) Typical foil-type strain gages. (c) A semiconductor strain-gage.
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Many applications, for example:
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A miniature accelerometer using strain gages: (a) Schematic diagram; (b) Mounting configuration of the strair

gages; (c) Bridge connection.
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The four gages are identical and symmetrically located, so

Ra=R+08R Rp=R+0R Rc=R—-0R Rp=R - 0R

As a consequence of the placement of the four gages in the
bridge circuit,
6v, O6R,+0R;—0R-—06R, O6R+6R—(—6R)—(—06R) OR

(0}

Vs 4R 4R R

Each of the strain gages satisfies
OR S[\ Gage factor (a.k.a. gage sensitivity)

R 56&/ Strain

So for the complete system
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(Constant voltage) Wheatstone bridge circuit.

5.8.1.1 Bridge Sensitivity

Strain-gauge measurements are calibrated with respect to a balanced bridge. When a strain gauge in
the bridge deforms, the balance is upset. If one of the arms of the bridge has a variable resistor, it can be
adjusted to restore the balance. The amount of this adjustment measures the amount by which the resis-
tance of the strain gauge has changed, thereby measuring the applied strain. This is known as the null-
balance method of strain measurement. This method is inherently slow because of the time required to
balance the bridge each time a reading is taken. A more common method, which is particularly suitable
for making dynamic readings from a strain-gauge bridge, is to measure the output voltage resulting
from the imbalance caused by the deformation of an active strain gauge in the bridge. To determine the
calibration constant of a strain-gauge bridge, the sensitivity of the bridge output to changes in the four
resistors in the bridge should be known. For small changes in resistance, using straightforward calculus,
this may be determined as

SVO _ (R26R1 — R16R2) _ (R45R3 - R36R4)
Vref (R +R,)’ (Rs +R,)

(5.56)

This result is subject to Equation 5.55, because changes are measured from the balanced condition. Note
from Equation 5.56 that if all four resistors are identical (in value and material), the changes in resis-
tance due to ambient effects cancel out among the first-order terms (8R;, dR,, 8R;, dR,), producing no net
effect on thefoutput voltage from the bridge. Closer examination of Equation 5.56 reveals that only the
adjace irs of resistors (e.g., R, with R,, and R, with R,) have to be identical in order to achieve this
environmental compensation. Even this requirement can be relaxed. In fact, compensation is achieved if
R, and R, have the same temperature coefficient and if R, and R, have the same temperature coefficient.
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Torque Sensors
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5.9.1 Strain-Gage Torque Sensors

The most straightforward method of torque sensing is to connect a torsion member
between the drive unit and the (driven) load in series, as shown in Figure 5.46, and to
measure the torque in the torsion member.

If a circular shaft (solid or hollow) is used as the torsion member, the torque-strain
relationship becomes relatively simple, and is given by:

4
& =

=36 T, (5.66)

where T is the torque transmitted through the member, ¢ is the principal strain (which is
at 45° to shaft axis) at radius » within the member, | is the polar moment of area of cross-
section of the member, and G is the shear modulus of the material.
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For each strain gage:

OR _
R
where S; is the gage factor
(sensitivity) of the gage
and ¢ is the strain seen by
the gage.
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Torque sensing using a torsion member.

With identical gages:

Ri=R+6R R,=R-6R
Ry=R-6R Ry=R-+ R

Strain-gage configurations for a circular shaft torque sensor.
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For each strain gage:

OR _
R
where S; is the gage factor
(sensitivity) of the gage
and ¢ is the strain seen by
the gage.

S € (2)

Strain-gage bridge

Factor of sensitivity

increase compared to

when just one active
strain gain is used.
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Figure 5.47

Strain-gage configurations for a circular shaft torque sensor.
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Loading Effect
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Stiffness degradation due to flexibility of the
torque-sensing element.

Compliances sum in series and the compliance of a spring with stiffness K is 1/K, so the
stiffness, K,o,, 0f the Motor, Torque Sensing Element, and Load in series satisfies:

1 1 1 K_K
< —+ = K, >-_—mL
KS Km KL Km + KL

But to maximize the sensitivity of the Torque Sensing Element we want K; to be small.



Loading Effect
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Stiffness degradation due to flexibility of the
torque-sensing element.

The torsional stiffness of the torque sensing element is shown, in Sec. 5.9.2.4, to be

GJ
K. = —
L
where G is the shear modulus of the material, / is the polar moment of area of the
cross-section, and L is the length.

The above expression for Ks and

r

£ = ——
2G]

can be used to show that, for the same K, the sensitivity of the torque sensing element

can be increased via use, for the torque sensing element, of a large diameter, thin-walled
tube. This, however, gives rise to other issues, e.g., a tendency to buckle under radial loads.



