
Operating	Principle	
Switch	the	directions	of	the	currents	in	the	stator	windings	to	rotate	the	magnetic	7ield	
generated	by	the	stator	around	the	axis	of	rotation	of	the	rotor.			The	rotor	can	then	be	a	
simple	multiple-pole	permanent	magnet,	but	the	directions	of	the	currents	in	the	stator	

windings	must	be	switched	in	relation	to	the	angular	position,	θm,	of	the	rotor.
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Much	in	common	with	a	stepper	motor,	except	
for	measurement	of	rotor	position.Figure	9.6
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Stator:	N	Pole	at	1,	S	Pole	at	1’
Stator:	N	Pole	at	2’,	S	Pole	at	2

Transition	when	rotor	N	pole	is	at	point	B
Figure	9.7

Stator:	N	Pole	at	1,	S	Pole	at	1’
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DC Motor Dynamics

Figure	9.8
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Closed-Loop Control of DC Motor Angular Velocity
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F  =  force on conductor of length l
    =  i l × B

If the conductor is free to move, then we can calculate the voltage across it: 
vb  =  voltage induced across conductor due to its velocity v in the direction of F 
     =  the “back electromotive force” =  the “back e.m.f.”
     =  B l v

+

−

vb

Figure	9.1

Recall	this	earlier	slide	...
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Note: When the field conditions are steady, the parameter km, which is the torque constant, may be used 
to represent kif.

In the case of ideal electrical-to-mechanical energy conversion at the rotor (where the rotor coil links 
with the stator field), we have Tm × ωm = vb × ia, when consistent units are used (e.g., torque in newton-
meters, speed in radians per second, voltage in volts, and current in amperes). Then we observe that

 k k k km m= ¢ = ¢  or   (9.6)

Field circuit: The field circuit equation is obtained by assuming that the stator magnetic field is not 
affected by the rotor magnetic field (i.e., the stator inductance is not affected by the rotor) and that there 
are no eddy current effects in the stator. Then, from Figure 9.8a,

 
v R i L

di

dt
f f f f

f= +  (9.7)

where
vf is the supply voltage to the stator
Rf is the resistance of the field windings
Lf is the inductance of the field windings

Armature circuit: The equation for the armature (rotor) circuit is written as (see Figure 9.8a)

 
v R i L

di
dt

va a a a
a

b= + +  (9.8)

where 
va is the supply voltage to the armature
Ra is the resistance of the armature windings
La is the leakage inductance in the armature windings

It should be emphasized here that the primary inductance or mutual inductance in the armature 
windings (due to its coupling with the stator field) is represented in the back e.m.f. term vb. The leakage 
inductance, which is usually neglected, represents the fraction of the armature flux that is not linked 
with the stator and is not used in the generation of useful torque. This represents a self-inductance effect 
in the armature.

Mechanical dynamics: The mechanical equation of the motor is obtained by applying Newton’s second 
law to the rotor. Assuming that the motor drives some load, which requires a load torque TL to oper-
ate, and that the frictional resistance in the armature (e.g., in the bearings) can be modeled by a linear 
viscous term, we have (see Figure 9.8b)

 
J

d
dt

T T bm
m

m L m m
w w= - -  (9.9)

where
Jm is the moment of inertia of the rotor
bm is the equivalent mechanical damping constant for the rotor

Note that the load torque may be due, in part, to the inertia of the external load that is coupled 
to the motor shaft. If the coupling flexibility is neglected (i.e., a rigid shaft), the load inertia may be 
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A harmonic drive is a special type of gear reducer that provides very large speed reductions (e.g., 200:1) 
without backlash problems. The harmonic drive is often integrated with conventional motors to provide 
very high torques, particularly in backlash-free servo applications. The principle of operation of a har-
monic drive is discussed in Chapter 7.

9.2.6.3 AC Torque Motors

Alternating current motors such as induction motors, as discussed later in this chapter, are also avail-
able in the form of torque motors. They have high starting torques and a steep slope (downward) in its 
torque versus speed characteristic. They are particularly suitable for operation in low speed or stalling/
braking conditions. Conventional ac motors tend to be unstable at low speeds (particularly near starting 
torque) and typically operate at high speeds (close to or equal to synchronous speed). However, ac torque 
motors can operate in a stable manner at low speeds, without overheating. They are commonly used in 
winding and braking tasks.

9.3 DC Motor Equations
Consider a dc motor with separate windings in the stator and the rotor. Each coil has a resistance (R) 
and an inductance (L). When a voltage (v) is applied to the coil, a current (i) flows through the circuit, 
thereby generating a magnetic field. As discussed before, forces are produced in the rotor windings, and 
an associated torque (Tm), which turns the rotor. The rotor speed (ωm) causes the magnetic flux linkage 
with the rotor coil from the stator field to change at a corresponding rate, thereby generating a voltage 
(back e.m.f.) in the rotor coil.

Equivalent circuits for the stator and the rotor of a conventional dc motor are shown in Figure 9.8a. 
Since the field flux is proportional to the field current if, we can express the magnetic torque of the 
motor as

 T ki i ikm f a am= =  (9.4)

which directly follows Equation 9.1. Next, in view of Equation 9.2, the back e.m.f. generated in the arma-
ture of the motor is given by

 v k i kb f m mm= ¢ ¢=w w  (9.5)

where 
if is the field current
ia is the armature current
ωm is the angular speed of the motor
k and k′ are motor constants, which depend on factors such as the rotor dimensions, the number of 

turns in the armature windings, and the permeability (inverse of reluctance) of the magnetic medium
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FIGURE 9.8 (a) The equivalent circuit of a conventional dc motor (separately excited) and (b) armature  mechanical 
loading diagram.
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Note: When the field conditions are steady, the parameter km, which is the torque constant, may be used 
to represent kif.

In the case of ideal electrical-to-mechanical energy conversion at the rotor (where the rotor coil links 
with the stator field), we have Tm × ωm = vb × ia, when consistent units are used (e.g., torque in newton-
meters, speed in radians per second, voltage in volts, and current in amperes). Then we observe that

 k k k km m= ¢ = ¢  or   (9.6)

Field circuit: The field circuit equation is obtained by assuming that the stator magnetic field is not 
affected by the rotor magnetic field (i.e., the stator inductance is not affected by the rotor) and that there 
are no eddy current effects in the stator. Then, from Figure 9.8a,

 
v R i L

di

dt
f f f f

f= +  (9.7)

where
vf is the supply voltage to the stator
Rf is the resistance of the field windings
Lf is the inductance of the field windings

Armature circuit: The equation for the armature (rotor) circuit is written as (see Figure 9.8a)

 
v R i L

di
dt

va a a a
a

b= + +  (9.8)

where 
va is the supply voltage to the armature
Ra is the resistance of the armature windings
La is the leakage inductance in the armature windings

It should be emphasized here that the primary inductance or mutual inductance in the armature 
windings (due to its coupling with the stator field) is represented in the back e.m.f. term vb. The leakage 
inductance, which is usually neglected, represents the fraction of the armature flux that is not linked 
with the stator and is not used in the generation of useful torque. This represents a self-inductance effect 
in the armature.

Mechanical dynamics: The mechanical equation of the motor is obtained by applying Newton’s second 
law to the rotor. Assuming that the motor drives some load, which requires a load torque TL to oper-
ate, and that the frictional resistance in the armature (e.g., in the bearings) can be modeled by a linear 
viscous term, we have (see Figure 9.8b)

 
J

d
dt

T T bm
m

m L m m
w w= - -  (9.9)

where
Jm is the moment of inertia of the rotor
bm is the equivalent mechanical damping constant for the rotor

Note that the load torque may be due, in part, to the inertia of the external load that is coupled 
to the motor shaft. If the coupling flexibility is neglected (i.e., a rigid shaft), the load inertia may be 

Figure	9.8	(a) Figure	9.8	(b)
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Note: When the field conditions are steady, the parameter km, which is the torque constant, may be used 
to represent kif.

In the case of ideal electrical-to-mechanical energy conversion at the rotor (where the rotor coil links 
with the stator field), we have Tm × ωm = vb × ia, when consistent units are used (e.g., torque in newton-
meters, speed in radians per second, voltage in volts, and current in amperes). Then we observe that

 k k k km m= ¢ = ¢  or   (9.6)

Field circuit: The field circuit equation is obtained by assuming that the stator magnetic field is not 
affected by the rotor magnetic field (i.e., the stator inductance is not affected by the rotor) and that there 
are no eddy current effects in the stator. Then, from Figure 9.8a,

 
v R i L

di

dt
f f f f

f= +  (9.7)

where
vf is the supply voltage to the stator
Rf is the resistance of the field windings
Lf is the inductance of the field windings

Armature circuit: The equation for the armature (rotor) circuit is written as (see Figure 9.8a)

 
v R i L

di
dt

va a a a
a

b= + +  (9.8)

where 
va is the supply voltage to the armature
Ra is the resistance of the armature windings
La is the leakage inductance in the armature windings

It should be emphasized here that the primary inductance or mutual inductance in the armature 
windings (due to its coupling with the stator field) is represented in the back e.m.f. term vb. The leakage 
inductance, which is usually neglected, represents the fraction of the armature flux that is not linked 
with the stator and is not used in the generation of useful torque. This represents a self-inductance effect 
in the armature.

Mechanical dynamics: The mechanical equation of the motor is obtained by applying Newton’s second 
law to the rotor. Assuming that the motor drives some load, which requires a load torque TL to oper-
ate, and that the frictional resistance in the armature (e.g., in the bearings) can be modeled by a linear 
viscous term, we have (see Figure 9.8b)

 
J

d
dt

T T bm
m

m L m m
w w= - -  (9.9)

where
Jm is the moment of inertia of the rotor
bm is the equivalent mechanical damping constant for the rotor

Note that the load torque may be due, in part, to the inertia of the external load that is coupled 
to the motor shaft. If the coupling flexibility is neglected (i.e., a rigid shaft), the load inertia may be 

Figure	9.8	(a) Figure	9.8	(b)
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DC Motor Equations:

Tm = kif ia (9.4)
vb = ′k if ωm (9.5)
k = ′k (9.6)

vf = Rf if + Lf
dif
dt

(9.7)

va = Raia + La
dia
dt
+ vb (9.8)

Jm
dωm
dt
= Tm − TL − bmωm (9.9)



14

With:
•	vf	 constant
•	va	constant
•	TL	constant

in	the	steady	state:
•	ωm	will	be	constant
•	Tm	will	be	constant

What	is	the	relationship	between	the	constant	vf ,	va	
and	TL	values	and	the	resulting	steady-state	ωm	and	
Tm	values?	

Answer:

Steady-State Speed-Torque Characteristics

Figure	9.9
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	 � 	
3. Figure	9.9,	from	our	textbook,	is	shown	above.		Regarding	that	Qigure,	explain,	in	your	own	words,	the	meaning	
of:	
(a) ωo	;	
(b)Ts	;	
(c) the	combination	of	the	� symbol	and	the	counter-clockwise-pointing	arc;	and	

(d) the	combination	of	the	va	symbol	and	the	arrow.	

4. Consider	the	continuous-time	signal	
y1(t)		=		sin(ω1t),						t	≥	0	

with	
ω1		=		(3/4)	(2π)		rad/sec	

When	y1(t)	is	sampled	at	the	times	t		=	0.0,	0.5,	1.0,	1.5,	2.0,	2.5,	...	sec,	the	result	is	a	discrete-time	signal	y(k),	
k	=	0,	1,	2,	3,	...	,	with	y(k)	= y1(k	×	0.5	sec).	

(a) Does	there	exist	another	continuous-time	signal	

y2(t)		=		sin(ω2	t	+ θ2 ),						t	≥	0	

with	
0			≤		ω2		<		ω1	

such	that,	when	y2(t)	is	sampled	at	the	same	times	t		=	0.0,	0.5,	1.0,	1.5,	2.0,	2.5,	...	sec,	the	result	is	the	same	
discrete-time	signal	y(k)?		If	yes,	determine	the	largest	ω2	such	that	such	a	y2(t)	exists.	

(b) Does	there	exist	another	continuous-time	signal	

y3(t)		=		sin(ω3	t	+ θ3 ),						t	≥	0	
with	
ω1		<		ω3		<		∞	

such	that,	when	y3(t)	is	sampled	at	the	same	times	t		=	0.0,	0.5,	1.0,	1.5,	2.0,	2.5,	...	sec,	the	result	is	the	same	
discrete-time	signal	y(k)?		If	yes,	determine	the	smallest	ω3	such	that	such	a	y3(t)	exists.	

vf
2

Page	� 	of	�3 4

2015	Final	Exam	problem:
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With:
•	vf	 constant
•	va	constant
•	TL	constant

in	the	steady	state:
•	ωm	will	be	constant
•	Tm	will	be	constant

What	is	the	relationship	between	the	constant	vf ,	va	
and	TL	values	and	the	resulting	steady-state	ωm	and	
Tm	values?	

Answer:

Steady-State Speed-Torque Characteristics

Not	the	(steady-state)	
motor	speed	when	the	
magnetic	torque,	Tm	,	and	
the	load	torque,	TL	,	are	

both	zero!

Figure	9.9
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With:
•	vf	 constant
•	va	constant
•	TL	constant

in	the	steady	state:
•	ωm	will	be	constant
•	Tm	will	be	constant

What	is	the	relationship	between	the	constant	vf ,	va	
and	TL	values	and	the	resulting	steady-state	ωm	and	
Tm	values?	

Answer:

Steady-State Speed-Torque Characteristics

Derivation 
Follows

The	(steady-state)	motor	
speed	when	the	magnetic	
torque,	Tm	,	is	zero	and	the	
load	torque,	TL	,	exactly	
counteracts	the	bearing	
friction	torque	bm	ω0.

Figure	9.9



Tm = ki f ia (9.4)

vb = ′k i f ωm (9.5)

k= ′k (9.6)

v f =Rf i f +Lf
di f
dt

(9.7)

va =Raia+La
dia
dt
+ vb (9.8)

Jm
dωm
dt
=Tm−TL−bmωm (9.9)
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0

0

0

Derivation of Figure 9.9
Steady-State DC Motor Equations:



Jm
dωm
dt
=Tm−TL−bmωm (9.9)

0

    
⇒

Rf va

′k v f
=

RaRf
2

k ′k v f
2 Tm +ωm
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0

0

  
⇒ ia =

Tm
ki f

  
⇒ i f =

v f

Rf

   
⇒ va =

Ra
ki f

Tm + ′k i f ωm
   
⇒ va =

Ra Rf

k vf
Tm + ′k

vf

Rf
ωm

When	va,	vf	and	TL	are	
constant,	in	the	steady	
state,	this	equation	is	

satis7ied.

The	“stall	torque”	is	
the	Tm	that	satis7ies	
the	above	equation	
when		ωm	=	0.

The	“no	load	speed”	is	the	
ωm	that	satis7ies	the	above	
equation	when		Tm	=	0.		

Derivation of Figure 9.9

   
Multiply both sides by

Rf

′k vf

Instead,	at	the	“no	load	speed”,  
TL		must	exactly	counteract	the	

bearing	friction	torque.
0

Steady-State DC Motor Equations:

From	equation	9.9,	at	the 
	“no	load	speed”,	the	load 
	torque,	TL	,	cannot	be	zero!	

Tm = ki f ia (9.4)

vb = ′k i f ωm (9.5)

k= ′k (9.6)

v f =Rf i f +Lf
di f
dt

(9.7)

va =Raia+La
dia
dt
+ vb (9.8)

Jm
dωm
dt
=Tm−TL−bmωm (9.9)



Tm = ki f ia (9.4)

vb = ′k i f ωm (9.5)

k= ′k (9.6)

v f =Rf i f +Lf
di f
dt

(9.7)

va =Raia+La
dia
dt
+ vb (9.8)

Jm
dωm
dt
=Tm−TL−bmωm (9.9)

    
⇒

RaRf
2

k ′k v f
2 Ts = ω0 =

RaRf
2

k ′k v f
2 Tm +ωm

    
The "no-load speed", ω0 , satisfies  

Rf va

′k v f
= ω0

   
The "stall torque", Ts , satisfies  

Rf va

′k v f
=

RaRf
2

k ′k v f
2 Ts
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0

0

    
⇒

Rf va

′k v f
=

RaRf
2

k ′k v f
2 Tm +ωm

  
⇒ ia =

Tm
ki f

    
⇒ 1 =

Tm
Ts

+
ωm
ω0

    
Divide by 

RaRf
2

k ′k v f
2 Ts = ω0

And we have that: ⎨

⎩

⎧

⎪⎪⎪

⎪

⎪

⎪

⎪

⎪

⎪

Derivation of Figure 9.9

  
⇒ i f =

v f

Rf

   
⇒ va =

Ra
ki f

Tm + ′k i f ωm
   
⇒ va =

Ra Rf

k vf
Tm + ′k

vf

Rf
ωm

   
Multiply both sides by

Rf

′k vf

Steady-State DC Motor Equations:
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!!  
1=

Tm
Ts

+
ωm
ω0

!!  
⇔ ω0 =ω0

Tm
Ts

+ωm

!!  
⇔ 1−Tm

Ts

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
ω0 =ωm

!!  
⇔ ωm =−

ω0
Ts
Tm +ω0

! 
Ts =

k va vf
Rf Ra

!!  

Rf va
′k vf

=ω0

From previous slide:

and:

⇒

Figure	9.9


