Reminder!

- Visit to the Living Computer Museum for this week's homework
- Normally $\$ 20$
- Free Thursday 5-8 pm

History of computation, pt. 1

Calculators

Abacus (ancient)

Antikythera mechanism

Slide rule

Mechanical calculators (Odhner ~1900)

Mechanical calculator (Walther 1960)

Curta calculator (1947-1972)

- Developed in concentration camp
- Addition, subtraction, multiplication, division

Language

- Computer used to mean the person

Data

Jacquard loom 1804

Silk weaving

- 24,000 cards!

A LA MIMOIRE DE J. MI. JACQUARD.

Punch cards

IIIIIII
 IIIIIII

1	1	1	111
1	1	1	1
1			

11
11

0100000000000000000000000011111111010000100010100001000010000100000000000000
 11

 $555555 \mathbf{I} 5555555 \mathbf{I} 5555555 \mathbf{I} 555555 \mathbf{5} 555555555555555$ II55555551555515555555555555555 $6666666 \mathbf{1 6 6 6 6 6 6 6 6 1 6 6 6 6 6 6 6 6 1 6 6 6 6 6 6 6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 1 6 6 6 6 6 1 6 1 6 ~}$ 777777717777177177777771777771177777777777777177717117777777777777777 88888888818888888818888888818888888181III8IIIB8IIII8IIIIIIIIBLII88888888888888

99999999999199999999і99999999199999991999 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162656465666766697071727374757677787980

Data

Data

Data

NARA-A Brief History

Storage of IBM record cards at the Federal records center in Alexandria, Virginia, November 1959.

Post-war computing

My family and computers

Pete Morales

Barbara Hosier

Plug board programming

- Data on punch cards
- Program hard wired

IBM 403 \& 403

‘Software’

Kelley Air Force Base (IBM 402 \& 403)

IBM 650

Magnetic drum (IBM 650)

- Program stored on drum (along with memory)
- Data on punch cards or magnetic tape

Grace Hopper and COBOL

Machine language

; Main program

Start

; **** YOUR CODE GOES HERE ****

	MOVLW	b'00001111'
	MOWWF	$\mathrm{H}^{\prime 2} 0^{\prime}$
	CLRF	$\mathrm{H}^{\prime} 21^{\prime}$
	MOVLW	b'11001100'
	MOVWF	$\mathrm{H}^{\prime} 21^{\prime}$
LoopPoint	RRF	H'20', F
	INCF	H'21', F
	GOTO	LoopPoint

Finish

TABLE 16-2: PIC16F87/88 INSTRUCTION SET

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status Affected	Notes	
		MSb				LSb				
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d		Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	$f, \mathrm{~d}$	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	$0 \mathrm{xx0}$	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC, Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENTED FILE REGISTER OPERATIONS										
BCF	f, b	Bit Clear f	1	01	00.bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL AND CONTROL OPERATIONS										
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1		1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2		0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$		
GOTO	k	Go to address	2	10	1 kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		

Grace Hopper \& COBOL

- Human write instruction in 'English-like language' (COBOL)
- A program translates to machine language (compiler)
- Same program (in COBOL) can be compiled (translated) to run on different computers
- Don't have to rewrite software for each computer

My family and computers

Pete Morales

Barbara Hosier

