

Can be done at any wavelength of light

- Alignment must always be small fraction of a wavelength
- Easier to do at radio (long wavelength)
- Historically started in radio and has slowly moved to visible light

Westerbork radio telescope (1970)

VLA (Very Large Array, 1980, recent upgrades)

Murchison Widefield Array (MWA)

The Atacama Large Millimeter/submillimeter Array

Protoplanetary disks

Birth of stars

Event Horizon Telescope

James Webb Space Telescope

Interferometers in everyday life

Cell phone towers

Military radar

Aircraft antennas

Combined ripple

- If sources are close together, we need to walk a long way for the combined ripples to look different
- If sources are far apart, we don't need to walk very far for the ripples to look different

Telescope resolution

- If waves look different at different edges of the telescope, it can sort the light
- Bigger the telescope, the better the resolution (ability to sort)

Interferometers

