Quantum spooks

Sunglasses

Two glasses

- Half of the unpolarized light (background) makes it through the rearmost glasses. Only vertically polarized light makes it through.
- Since forward glasses only let vertical polarization through, all the light that got through the first pair make it through the second.

Two glasses

- Half of the unpolarized light (background) makes it through the rearmost glasses. Only horizontally polarized light makes it through.
- Since forward glasses only let vertical polarization through, all the light that got through the first pair is blocked by the second pair.

Only relative orientation matters

Mixing sets

$1 / 2$ * all $=1 / 2$

$1 / 2$ * $1 / 2=1 / 4$

$1 / 2$ * none $=0$

Mixing sets

- Two glasses of the same 'set' (frame color) gives either all of light through the first or none.
- Two glasses from different sets always gives $1 / 2$ of light through the first pair.

Adding a third pair of glasses

Adding a third pair of glasses

Order matters!

Wearing sunglasses at night

Diane Knutson,
International Dark-Sky
Association

Fraction of photons making it through

$1 / 2$ * all $=1 / 2$

$1 / 2$ * $1 / 2=1 / 4$

$1 / 2$ * none $=0$

Fraction of photons making it through

$1 / 2$ * $1 / 2$ * none $=0$

$1 / 2 * 1 / 2 * 1 / 2=1 / 8$

Deterministic or Random

- If two glasses from the same set (frame color), whether a photon makes it through the next pair is deterministic (all or
 none)
- If two glasses from different sets, probability of photon making it through the second pair is random (always 50-50)

Deterministic and random

- We've made two sets of glasses (green or blue frame color) that are internally deterministic but mutually random.
- A deep feature of quantum mechanics

