Quantum spooks

Cryptography

- "Lets have lunch at one"
- Simple encryption
- "ohwv kdyh oxfk dw rqh"
- Cryptography:
- encrypt message \rightarrow send \rightarrow decrypt message

What is cryptography not useful for?

Messages blocked

Messages never intercepted

What is cryptography useful for?

- Sending a message that even if intercepted (copied) cannot be understood (read)

Cryptography

- Huge industry, everything from iMessage to Amazon purchases to banking
- Almost every online communication is now encrypted
encrypt message \rightarrow send \rightarrow decrypt message

Cryptography classes

A) Encrypted by some cypher or key

- Always breakable given enough computation
- (quantum computers will be very good at some common cyphers)
B) Encrypted by a random number as long as the message (one time pad)
- Unbreakable*

One time pad

- "Lets have lunch at one"
- Random number (key) as long as the message
- 152009215330282426582
- mjvs qcwjcouppbevftwg
- Unbreakable unless VBM has a copy of the key

One time pad

One time pad

- Breakable only if the key is intercepted and copied

Modern cryptography

- Use one time pad for messages (long random key, unbreakable)
- Protect key from being copied

Quantum cryptography

Twinned photons

- It is possible to split one photon into two 'twins'
- Twin photons have the same polarization

Same random (deterministic)

Different random

Terms of entanglement

- Twin knows what happens instantly
- So weird
- Fundamental feature of how our world works

	\bigcirc	\rightarrow														
	0	0	0	1	0	0	1	0	1	1	0	1	0	0	1	1
N4\%	0	\rightarrow														
	1	0	0	1	1	0	0	1	0	1	1	1	0	0	0	1

Same random (deterministic)

Different random

Looks like a key

Same random (deterministic)

- But VBM could intercept the key

Protecting against the VBM

- Send twinned photons
- Randomly choose set (blue vs. green frames)
- Later publicly say which frame you used for each photon (but not what you saw)
- Only keep photons where you happened to pick glasses from the same set

Protecting against the VBM

- Lastly, share a small part of the key
- If VBM cut fiber, he had to guess which set you would use.
- VBM guesses wrong 1/2 the time, when he does friends see different answers 1/2 the time (becomes random)
- Can tell if the key was intercepted

Sunglasses

Two glasses

- Half of the unpolarized light (background) makes it through the rearmost glasses. Only vertically polarized light makes it through.
- Since forward glasses only let vertical polarization through, all the light that got through the first pair make it through the second.

Two glasses

- Half of the unpolarized light (background) makes it through the rearmost glasses. Only horizontally polarized light makes it through.
- Since forward glasses only let vertical polarization through, all the light that got through the first pair is blocked by the second pair.

Only relative orientation matters

Mixing sets

$1 / 2$ * all $=1 / 2$

$1 / 2$ * $1 / 2=1 / 4$

$1 / 2$ * none $=0$

Mixing sets

- Two glasses of the same 'set' (frame color) gives either all of light through the first or none.
- Two glasses from different sets always gives $1 / 2$ of light through the first pair.

Adding a third pair of glasses

Adding a third pair of glasses

Order matters!

Wearing sunglasses at night

Diane Knutson,
International Dark-Sky
Association

Fraction of photons making it through

$1 / 2$ * all $=1 / 2$

$1 / 2$ * $1 / 2=1 / 4$

$1 / 2$ * none $=0$

Fraction of photons making it through

$1 / 2$ * $1 / 2$ * none $=0$

$1 / 2 * 1 / 2 * 1 / 2=1 / 8$

Deterministic or Random

- If two glasses from the same set (frame color), whether a photon makes it through the next pair is deterministic (all or
 none)
- If two glasses from different sets, probability of photon making it through the second pair is random (always 50-50)

Deterministic and random

- We've made two sets of glasses (green or blue frame color) that are internally deterministic but mutually random.
- A deep feature of quantum mechanics

