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In order to create a more just technological world, we need more diverse 
voices at the table when we create technology. To do this, we need to employ 
conventional solutions like reducing barriers to entry and addressing the 
“leaky pipeline” issues that make mid-career professionals drop out or stall 
on their way to the top. I think we also need to add an unconventional 
solution: we need to add nuance to the way we talk about all things digital. 
This is easier said than done. One illustration of the difficulty of talking 
about computer science comes from an xkcd comic by Randall Munro. In it, 
a woman sits at a computer and a man stands behind her: 

“When a user takes a photo, the app should check whether they’re in a 
national park,” says the man.

“Sure, easy GIS lookup,” says the woman. “Gimme a few hours.”
“And check whether the photo is a bird,” says the man.
“I’ll need a research team and five years,” says the woman.
“In CS, it can be hard to explain the difference between the easy and the 

virtually impossible,” reads the caption.1

Because it’s complicated to explain why a computer might have trou-
ble recognizing a bird in an image, or differentiating between a parrot and 
guacamole, we need more people (data journalists, perhaps?) explaining 
complex technical topics in plain language to demystify the more arcane 
corners of the AI world.

The difficulty of talking about computation has led to a lot of misun-
derstandings. One recurrent idea in this book is that computers are good at 
some things and very bad at others, and social problems arise from situa-
tions in which people misjudge how suitable a computer is for performing 
the task. The classic example of a thing that is very simple for people but 
very complex for computers is navigating a room with toys all over the 
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88 Chapter 7

floor. The average toddler can navigate a room without stepping on toys 
(though of course she might not choose to do so). A robot can’t. To get the 
robot to navigate the toy-strewn floor, we would have to program in all of 
the information about the toys and their exact dimensions and have the 
robot calculate a path around the toys. If the toys moved, the robot would 
need its schema updated. Self-driving cars, which we’ll discuss in chapter 8, 
work like this hypothetical robot in the playroom: they constantly update 
their preprogrammed map of the world. 

There are also predictable pitfalls to the robot method, as people who 
own both Roomba robotic vacuum cleaners and pets have discovered. 
When a pet leaves something disgusting on the floor, the Roomba will 
smear it all over the house. “Quite honestly, we see this a lot,” a spokesman 
from iRobot, the company that makes the Roomba, said to the Guardian in 
August 2016. “We generally tell people to try not to schedule your vacuum 
if you know you have dogs that may create such a mess. With animals any-
thing can happen.”2

I can use a euphemism to talk about the disgusting things that pets do 
because everyday language allows us to refer to things without using precise 
words. If I say that my dog is adorable, but also gross, you will understand. 
You can hold the two competing ideas in your head at the same time, and 
you can guess what I mean by gross. There are no such euphemisms in 
mathematical language. In mathematical language, everything is highly 
precise. Part of the communication problem that exists in computational 
culture derives from the imprecision of everyday language and the preci-
sion of mathematical language. One example: in programming, there is a 
concept called a variable. You assign a value to a variable by writing some-
thing like “X = 2,” and then you can use X in a routine. There are two kinds 
of variables: variables that change, which are called variables, and variables 
that don’t change, which are called constants. This makes perfect sense to 
a programmer: a variable can be a constant. To a nonprogrammer, it likely 
doesn’t make sense: constant is the opposite of varying, so a thing that var-
ies is not a thing that is unvarying. It’s confusing.

This naming problem is not new. Language has always evolved along 
with science. In biology, cells got their name because the man who dis-
covered them in 1665, Robert Hooke, was reminded of the walls of monks’ 
cells in monasteries. The naming problem is particularly acute right now, 
however, because of the rapid pace of technological change. We’re adopting 
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Machine Learning 89

new computational concepts and new hardware at a breathtaking rate, and 
people are inventing names for new things based on concepts or artifacts 
that already exist. 

Although computer scientists and mathematicians tend to be talented 
at computer science and math, as a group they tend not to be sensitive 
to the nuances of language. If something needs a name, they don’t obsess 
over picking the perfect name that has ideal connotations and Latin roots 
and what have you. They just pick a name, usually one that has to do with 
something they like. Python the programming language is named after 
Monty Python the comedy troupe (Monty Python is the ur-comedy text 
in computer science, like Star Wars is the ur-narrative text.) Django, a web 
framework, is named after Django Reinhardt the jazz guitarist, a favorite of 
the Django framework’s inventor. Java the language is named after coffee. 
JavaScript, an unrelated language, was invented around the same time as 
Java and is also (unfortunately) named after coffee. 

As the term machine learning has spread from computer science circles 
into the mainstream, a number of issues have arisen from linguistic confu-
sion. Machine learning (ML) implies that the computer has agency and is 
somehow sentient because it “learns,” and learning is a term usually applied 
to sentient beings like people (or partially sentient beings like animals). 
However, computer scientists know that machine “learning” is more akin 
to a metaphor in this case: it means that the machine can improve at its 
programmed, routine, automated tasks. It doesn’t mean that the machine 
acquires knowledge or wisdom or agency, despite what the term learning 
might imply. This type of linguistic confusion is at the root of many mis-
conceptions about computers.3

Imagination also complicates things. How you define AI depends on 
what you want to believe about the future. One of Marvin Minsky’s stu-
dents, Ray Kurzweil, is a proponent of the singularity theory, a hypothetical 
future merging of man and machine that he thinks will be achieved by 
2045. (Kurzweil is famous for inventing a musical synthesizer that sounds 
like a grand piano.) Singularity is a major preoccupation of science fiction. 
I was once interviewed for a futurists’ summit, and the interviewer asked 
me about the paperclip theory: What if you invented a machine that made 
paperclips, and then you taught the machine to want to make paperclips, 
and then you taught the machine to want to make other things, and then 
the machine made lots of other machines and all the machines took over? 
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90 Chapter 7

“Is that the singularity?” the interviewer asked. “And aren’t you worried 
about it?” That’s fun to think about, but it’s also not reasonable. You can 
unplug the paperclip machine. Problem solved. Also, this is a purely hypo-
thetical situation. It’s not real.

As psychologist Stephen Pinker told IEEE Spectrum, the magazine of the 
Institute of Electrical and Electronics Engineers (IEEE), in a special issue on 
the singularity: “There is not the slightest reason to believe in a coming 
singularity. The fact that you can visualize a future in your imagination is 
not evidence that it is likely or even possible. Look at domed cities, jet-pack 
commuting, underwater cities, mile-high buildings, and nuclear-powered 
automobiles—all staples of futuristic fantasies when I was a child that have 
never arrived. Sheer processing power is not a pixie dust that magically 
solves all your problems.”4

Facebook’s Yann LeCun is also a singularity skeptic. He told IEEE Spec-
trum: “There are people that you’d expect to hype the Singularity, like Ray 
Kurzweil. He’s a futurist. He likes to have this positivist view of the future. 
He sells a lot of books this way. But he has not contributed anything to the 
science of AI, as far as I can tell. He’s sold products based on technology, 
some of which were somewhat innovative, but nothing conceptually new. 
And certainly he has never written papers that taught the world anything 
on how to make progress in AI.”5 Reasonable, smart people disagree about 
what will happen in the future—in part because nobody can see the future.

I’m going to try to bring some clarity to the situation by defining 
machine learning and showing you an example of how someone might 
perform machine learning on a dataset. I’m going to explain machine 
learning a few different ways and also demonstrate some code. It’s going 
to get technical. If the technical parts get confusing, don’t worry; you can 
skim them first and return to them later.

AI enjoyed a popularity bump in 2017 in contrast to many years of what 
people call an AI winter. In the mainstream, people mostly ignored AI for 
the first decade of the 2000s. The Internet was the popular thing techno-
logically, then mobile devices, and those were the focus of our collective 
imagination. In the middle of the 2010s, however, people started talking 
about machine learning. Suddenly, AI was on fire again. AI startups were 
founded and acquired. IBM’s Watson beat a human player at Jeopardy!; an 
algorithm outfoxed a human player at playing Go. Even the words machine 
learning were cool. A machine could learn! The promise was delivered!
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Machine Learning 91

At first, I wanted to believe that some genius had figured out the truly 
hard problem of making a machine think—but when I looked closer, it 
turned out that the reality was far more nuanced. What had happened was 
that scientists had redefined the term machine learning so that it referred to 
their work. They used the term so much that its meaning changed.

This happens. Language is fluid. A good example is the word literally, 
which used to mean the opposite of figuratively. In the 1990s, if you said, 
“My mouth was literally on fire after eating that ghost pepper,” it meant 
that there were actual flames in your mouth and you were talking from the 
other side of recovery from third-degree burns. However, in the 2000s, a 
critical mass of people started using literally as a synonym for figuratively 
and for emphasis. “I was ready to literally kill someone if I had to listen 
to that John Mayer song one more time” became understood as “I would 
really prefer not to listen to another John Mayer song,” rather than a state-
ment about murder or mayhem.

The term machine learning entered the lexicon in 1959, according to the 
Oxford English Dictionary (OED). The OED began including machine learn-
ing as a phrase in its third edition, published in 2000. The OED defines 
machine learning as follows:

machine learning n. Computing the capacity of a computer to learn from experi-
ence, i.e. to modify its processing on the basis of newly acquired information.

1959 IBM Jrnl. 3 211/1 We have at our command computers with adequate 
data-handling ability and with sufficient computational speed to make use of 
machine-learning techniques.

1990 New Scientist 8 Sept. 78/1 When Doug Lenat of Stanford developed 
Eurisko, a second generation machine learning system, he thought that he had cre-
ated a real intellectual.6

This definition is true, but it doesn’t quite capture the way that contem-
porary computer scientists use the term. A more comprehensive definition 
is found in Oxford’s A Dictionary of Computer Science: 

machine learning

A branch of artificial intelligence concerned with the construction of programs that 
learn from experience. Learning may take many forms, ranging from learning from 
examples and learning by analogy to autonomous learning of concepts and learning 
by discovery.

Incremental learning involves continuous improvement as new data arrives while 
one-shot or batch learning distinguishes a training phase from the application phase. 
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92 Chapter 7

Supervised learning occurs when the training input has been explicitly labeled with 
the classes to be learned.

Most learning methods aim to demonstrate generalization whereby the system 
develops efficient and effective representations that encompass large chunks of 
closely related data.7

This is closer, but still not quite right. The documentation for scikit-
learn, a popular software library for machine learning in Python, has a dif-
ferent definition: “Machine learning is about learning some properties of a 
data set and applying them to new data. This is why a common practice in 
machine learning to evaluate an algorithm is to split the data at hand into 
two sets, one that we call the training set on which we learn data proper-
ties and one that we call the testing set on which we test these properties.”8

It’s rare that a term has so much disagreement across different sources. 
The definition of a dog, for example, is pretty consistent across texts. How-
ever, machine learning is so new, and there is so little consensus, that it’s 
not surprising that the linguistic definitions haven’t caught up to reality.

Tom M. Mitchell, the E. Fredkin University Professor in the Machine 
Learning Department of Carnegie Mellon University’s School of Computer 
Science, offers a good definition of machine learning in “The Discipline of 
Machine Learning.” He writes: “We say that a machine learns with respect 
to a particular task T, performance metric P, and type of experience E, if the 
system reliably improves its performance P at task T, following experience 
E. Depending on how we specify T, P, and E, the learning task might also 
be called by names such as data mining, autonomous discovery, database 
updating, programming by example, etc.”9 I think this is a good defini-
tion because Mitchell uses very precise language to define learning. When 
a machine “learns,” it doesn’t mean that the machine has a brain made out 
of metal. It means that the machine has become more accurate at perform-
ing a single, specific task according to a specific metric that a person has 
defined. 

This kind of learning does not imply intelligence. As programmer and 
consultant George V. Neville-Neil writes in the Communications of the ACM:

We have had nearly 50 years of human/computer competition in the game of chess, 
but does this mean that any of those computers are intelligent? No, it does not—for 
two reasons. The first is that chess is not a test of intelligence; it is the test of a par-
ticular skill—the skill of playing chess. If I could beat a Grandmaster at chess and yet 
not be able to hand you the salt at the table when asked, would I be intelligent? The 
second reason is that thinking chess was a test of intelligence was based on a false 
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Machine Learning 93

cultural premise that brilliant chess players were brilliant minds, more gifted than 
those around them. Yes, many intelligent people excel at chess, but chess, or any 
other single skill, does not denote intelligence.10

There are three general types of machine learning: supervised learning, 
unsupervised learning, and reinforcement learning. Here are definitions 
of each from a widely used textbook called Artificial Intelligence: A Modern 
Approach by UC Berkeley professor Stuart Russell and Google’s director of 
research, Peter Norvig:

Supervised learning: The computer is presented with example inputs and their de-
sired outputs, given by a “teacher,” and the goal is to learn a general rule that maps 
inputs to outputs.

Unsupervised learning: No labels are given to the learning algorithm, leaving it 
on its own to find structure in its input. Unsupervised learning can be a goal in itself 
(discovering hidden patterns in data) or a means toward an end (feature learning).

Reinforcement learning: A computer program interacts with a dynamic environ-
ment in which it must perform a certain goal (such as driving a vehicle or playing a 
game against an opponent). The program is provided feedback in terms of rewards 
and punishments as it navigates its problem space.11

Supervised learning is the most straightforward. The machine is provided 
with the training data and labeled outputs. We essentially tell the machine 
what we want to find, then fine-tune the model until we get the machine 
to predict what we know to be true. 

All three kinds of machine learning depend on training data, known 
datasets for practicing and tuning the machine-learning model. Let’s say 
that my training data is a dataset of one hundred thousand credit card com-
pany customers. The dataset contains the data you would expect a credit 
card company to have for a person: name, age, address, credit score, inter-
est rate, account balance, name(s) of any joint signers on the account, a list 
of charges, and a record of payment amounts and dates. Let’s say that we 
want the ML model to predict who is likely to pay their bill late. We want to 
find these people because every time someone pays a bill late, the interest 
rate on the account increases, which means the credit card company makes 
more money on interest charges. The training data has a column that indi-
cates who in this group of one hundred thousand has paid their bills late. 
We split the training data into two groups of fifty thousand names each: the 
training set and the test data. Then, we run a machine-learning algorithm 
against the training set to construct a model, a black box, that predicts what 
we already know. We can then apply the model to the test data and see the 
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94 Chapter 7

model’s prediction for which customers are likely to pay late. Finally, we 
compare the model’s prediction to what we know is true—the customers 
in the test data who actually paid late. This gives us a score that measures 
the model’s precision and recall. If we as model makers decide that the 
model’s precision/recall score is high enough, we can deploy the model on 
real customers.

A handful of different machine-learning algorithms are available to 
apply to datasets. You may have come across some of the names, which 
include random forest, decision tree, nearest neighbor, naive Bayes, or hid-
den Markov. An algorithm, remember, is a series of steps or procedures that 
the computer is instructed to follow. In machine learning, the algorithm is 
coupled with variables to create a mathematical model. A wonderful expla-
nation of models is found in Cathy O’Neil’s Weapons of Math Destruction. 
O’Neil explains that we model things unconsciously all the time. When I 
decide what to make for dinner, I make a model: what food is in my refrig-
erator, what dishes I could possibly make with that food, who the people 
eating that night are (usually my husband and son and me), and what their 
food preferences are. I evaluate the various dishes and recall how each per-
formed in the past—who took seconds of what, and what items are on the 
ever-changing list of shunned foods: cashews, frozen vegetables, coconut, 
organ meats. By deciding what to make based on what I have and what 
people like, I’m optimizing my meal choices for a set of features. Building 
a mathematical model means formalizing the features and the choices in 
mathematical terms.12

Let’s say that I want to “do” machine learning. The first thing I do is grab 
a dataset. A variety of interesting datasets are available for machine-learning 
practice; they are collected in online repositories. There are datasets of facial 
expressions, of pets, or of YouTube videos. There are datasets of emails sent 
by people who worked at a failed company (Enron), datasets of newsgroup 
conversations in the 1990s (Usenet), datasets of friendship networks from 
failed social network companies (Friendster), datasets of movies that people 
watched on streaming services (Netflix), datasets of people saying common 
phrases in different accents, or datasets of people’s messy handwriting. These 
datasets are collected from active corporations, from websites, from univer-
sity researchers, from volunteers, and from defunct corporations. This small 
number of iconic datasets is posted online and the datasets form the back-
bone of all contemporary artificial intelligence. You might even find your 
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Machine Learning 95

own data in them. A friend of mine once found a video of herself as a toddler 
in a behavioral science archive; her mother had participated in a parent-child 
behavioral study when my friend was little. Researchers still had the video 
and still used it for drawing conclusions about the world.

Now, let’s go through a classic practice exercise: we’ll use machine learn-
ing to predict who survived the Titanic crash. Think about what happened 
on the Titanic after it hit the iceberg. Did you picture Leonardo di Caprio 
and Kate Winslet sliding across the decks of the ship? That’s not real—
but it probably colors your recall of the event, if you’ve seen the movie as 
many times as I have. It’s quite likely that you’ve seen the movie at least 
once. Titanic earned $659 million and $1.5 billion overseas, making it the 
biggest movie in the world in 1997 and the second-highest-grossing film 
ever worldwide. (Titanic director James Cameron also holds the number-
one spot for his other blockbuster, Avatar.) The film stayed in theaters for  
almost a year, fueled in part by young people who went to the theater 
to watch it over and over again.13 Titanic the movie has become a part of  
our collective memory, just like the actual Titanic maritime disaster. Our 
brains quite commonly confuse actual events with realistic fiction. It’s 
unfortunate, but it’s normal. This confusion complicates the way we per-
ceive risk. 

We draw conclusions about risk based on heuristics, or informal rules. 
These heuristics are affected by stories that are easy to recall and by emo-
tionally resonant experiences. For example: When he was a little boy, New 
York Times columnist Charles Blow was attacked by a vicious dog. The dog 
almost tore his face off. As an adult, he writes in his memoir, he remains wary 
of strange dogs.14 This makes perfect sense. Being a small child attacked by 
a large animal is traumatic, and of course it would be the first thing some-
one would think of when seeing a dog for the rest of his life. Reading the 
book, I empathized with the little boy and felt scared when he felt scared. 
The day after I read Blow’s memoir, I saw a man walking a dog without a 
leash in a park near my house—and I immediately thought of Blow and 
how other people who are afraid of dogs would be made uncomfortable by 
the fact that this dog was not on a leash. I wondered if the dog would go 
berserk and, if so, what would happen. The story affected my perception of 
risk. This is the same thinking that leads people to carry pepper spray after 
watching a lot of episodes of Law & Order: SVU or to check the back seat 
of the car for nasty surprises after watching a horror movie. The technical 
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96 Chapter 7

name is the availability heuristic.15 The stories that spring to mind first are 
the ones we tend to think are the most important or occur most frequently.

Perhaps because it features so prominently in our collective imagination, 
the Titanic disaster is commonly used for teaching machine learning. Spe-
cifically, a list of the passengers on the Titanic is used to teach students how 
to generate predictions using data. It works well as a class exercise because 
almost all of the students have seen Titanic or know about the disaster. This 
is valuable for an instructor because you don’t have to spend too much class 
time going over the historical context: you can get right to the fun part, 
which is the prediction.

I’m going to take you through the fun part using supervised learning. 
I think it is important to see exactly what happens when someone does 
machine learning. There are plenty of sites online that have ML tutorials 
if you’re interested in going through the exercise yourself. I’m going to 
take you through a tutorial from a site called DataCamp, which was recom-
mended as a first step for competing in data-science competitions by a dif-
ferent site, Kaggle.16 Kaggle, which is owned by Google’s parent company, 
Alphabet, is a site in which people compete to get the highest score for 
analyzing a dataset. Data scientists use it to compete in teams, sharpen their 
skills, or practice collaborating. It’s also useful for teaching students about 
data science or for finding datasets.

We’re going to do a DataCamp Titanic tutorial using Python and a few 
popular Python libraries: pandas, scikit-learn, and numpy. A library is a lit-
tle bucket of functions sitting somewhere on the Internet. When we import 
a library, we make its functions available to the program we’re writing. One 
way to think about it is to think about a physical library. I’m a member of 
the New York Public Library (NYPL). Whenever I go to stay somewhere for 
more than a week, for work or for vacation, I generally try to go to the local 
library and get a library card. Signing up for a local library card allows me 
to use all the books and resources available at that library. For the time that 
I’m a local library member, I can use all my core NYPL resources plus the 
unique resources of the local library. In a Python program, we start with a 
whole bunch of built-in functions: those are the NYPL. Importing a new 
library is like signing up for the local library card. Our program can use all 
the good stuff in the core Python library plus the nifty functions written by 
the researchers and open-source developers who made and published the 
scikit-learn library, for example.
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Machine Learning 97

Pandas, another library we’ll use, has a container called a DataFrame 
that “holds” a set of data. This type of container is also called an object, as 
in object-oriented programming. Object is a generic term in programming, just 
as it is in the real world. In programming, an object is a conceptual wrapper 
for a little package of data, variables, and code. Having the label object gives 
us something to hold on to. We need to conceptualize our package of bits 
as something in order to think about it and talk about it. 

The first thing we do is break our data into two sets: training data and 
test data. We’re going to develop a model, train it on the training data, then 
run it on the test data. Remember how there is general AI and narrow AI? 
This is narrow. Let’s start by typing the following:

import pandas as pd 
import numpy as np 
from sklearn import tree, preprocessing

We’ve just imported several libraries that we’ll use for our analysis. We use 
an alias, pd, for pandas, and the alias np for numpy. We now have access to 
all of the functions in pandas and numpy. We can choose to import all of 
the functions or just a few. From scikit-learn, we’ll import only two func-
tions. One is named tree and the other is named preprocessing.

Next, let’s import the data from a comma-separated values (CSV) file that 
is also sitting somewhere on the Internet. Specifically, this CSV file is sit-
ting on a server owned by Amazon Web Services (AWS). We can tell because 
the base URL of the file (the first part after http://) is s3.amazonaws.com. 
A CSV file is a file of structured data in which each column is separated by 
a comma. We’re going to import two different Titanic data files from AWS. 
One is a training data set, another is a test data set. Both data sets are in CSV 
format. Let’s import the data:

train_url =  
"http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/
train.csv" 
train = pd.read_csv(train_url)

test_url = "http://s3.amazonaws.com/assets.datacamp.com/
course/Kaggle/test.csv" 
test = pd.read_csv(test_url)

pd.read_csv() means “please invoke the read_csv() function, which lives in 
the pd (pandas) library.” Technically, we created a DataFrame object and 
called one of its built-in methods. Regardless, the data is now imported 
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98 Chapter 7

into two variables: train and test. We’ll use the data in the train variable to 
create the model, and then we’ll use the data in the test variable to test our 
model’s accuracy.

Let’s see what’s in the head, or the first few lines, of the training data:

print(train.head())

PassengerId Survived Pclass \

0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3

Name Sex Age SibSp \

0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley 

(Florence Briggs Th…
female 38.0 1

2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath 

(Lily May Peel)
female 35.0 1

4 Allen, Mr. William Henry male 35.0 0

Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S

It looks like the data is twelve columns. The columns are labeled Passen-
gerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, 
and Embarked. What do these column headings mean?

To answer this, we need a data dictionary, which is provided with most 
datasets. The data dictionary reveals the following:

Pclass = Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) 
Survived = Survival (0 = No; 1 = Yes) 
Name = Name 
Sex = Sex 
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Age = Age (in years; fractional if age less than one (1). If 
the age is estimated, it is in the form xx.5) 
Sibsp = Number of Siblings/Spouses Aboard 
Parch = Number of Parents/Children Aboard 
Ticket = Ticket Number 
Fare = Passenger Fare (pre-1970 British pound) 
Cabin = Cabin number 
Embarked = Port of Embarkation (C = Cherbourg; Q = Queenstown; 
S = Southampton)

For most of the columns, we have data. For some column values, we do 
not have data. For PassengerId 1, Mr. Owen Harris Braund, the value for 
Cabin is NaN. This means “not a number.” NaN is different than zero; zero 
is a number. NaN means that there is no value for this variable. This distinc-
tion might seem unimportant for everyday life, but it’s crucially important 
in computer science. Remember that mathematical language is precise. For 
example, NULL indicates an empty set, which is also different than NaN 
or zero.

Let’s see what’s in the first few lines of the test dataset:

print(test.head())

PassengerId Pclass Name Sex \

0 892 3 Kelly, Mr. James male
1 893 3 Wilkes, Mrs. James (Ellen Needs) female
2 894 2 Myles, Mr. Thomas Francis male
3 895 3 Wirz, Mr. Albert male
4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female

Age SibSp Parch Ticket Fare Cabin Embarked

0 34.5 0 0 330911 7.8292 NaN Q
1 47.0 1 0 363272 7.0000 NaN S
2 62.0 0 0 240276 9.6875 NaN Q
3 27.0 0 0 315154 8.6625 NaN S
4 22.0 1 1 3101298 12.2875 NaN S

As you can see, test has the same type of data as train, minus the Survived 
column. Great! Our goal is to create a Survived column in the test data 
that contains a prediction for each passenger. (Of course, someone already 
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knows which passengers in the test data set survived—but it wouldn’t be 
much of a tutorial if the data set already contained the answers.)

Next, we’re going to run some basic summary statistics on the training 
dataset in order to get to know it a little better. When data journalists do 
this, we call it interviewing the data. We interview data just like we might 
interview a human source. A human has a name, an age, a background; a 
dataset has a size and a number of columns. Asking a column of data about 
its average value is a bit like asking someone to spell their last name.

We can get to know our data a bit by running a function called describe 
that assembles some basic summary statistics and puts them into a handy 
table, as follows:

train.describe()

PassengerId Survived Pclass Age SibSp Parch Fare

count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

The training dataset has 891 records. Of these, only 714 records show the 
age of the passenger. For the data we have available, the average age of the 
passengers is 29.699118; normal people would say that the average age is 
thirty.

A few of these statistics require interpretation: Survived has a min of 0 
and a max of 1. In other words, it is a Boolean value. Either someone sur-
vived (1), or they didn’t (0). We can calculate an average, which turns out to 
be 0.38. Similarly, we can calculate an average for Pclass, or passenger class. 
Passengers’ tickets were for first, second, or third class. The average doesn’t 
literally mean that someone traveled 2.308 class.

Now that we’ve gotten to know our data a little bit, it’s time to do some 
analysis. Let’s first look at the number of passengers. We can use a function 
called value_counts to do this. Value_counts will show how many values 
there are for each distinct category in a column. In other words, how many 
passengers are traveling in each passenger class? Let’s find out:
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train["Pclass"].value_counts() 
1    216 
2    184 
3    491 
Name: Pclass, dtype: int64

The training data shows 491 passengers traveling third class, 184 passengers 
traveling second class, and 216 passengers traveling first class.

Let’s look at the numbers for survival:

train["Survived"].value_counts() 
0    549 
1    342 
Name: Survived, dtype: int64

The training data shows that 549 people perished and 342 survived.
Let’s see those numbers normalized:

print(train["Survived"].value_counts(normalize = True)) 
0    0.616162 
1    0.383838 
Name: Survived, dtype: float64

Sixty-two percent of passengers perished, and 38 percent survived. In other 
words, most people died in the disaster. If we were to make a prediction 
about whether a random passenger survived, we’d likely predict that they 
did not survive. 

We could stop here if we wanted. We just drew a conclusion that would 
allow us to make a reasonable prediction. We can do better, however, so 
let’s keep going. Are there any factors that might help improve the predic-
tion? In addition to survival, we have some other columns in the data: 
Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, and Embarked.

Pclass is a proxy for the socioeconomic class of the passengers. That 
might be useful as a predictor. We could guess that first-class passengers got 
on the boats before third-class passengers. Sex is also a reasonable guess for 
a predictor. We know that “women and children first” was a principle used 
during maritime disasters. This principle dates to 1852, when the British 
HMS Birkenhead, a troop ship, ran aground off the coast of South Africa. 
It’s not a uniformly applied principle, but it’s recurrent enough to use for 
social analysis.

Now, let’s do some comparisons to see if we can find variables that seem 
predictive:
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# Passengers that survived vs passengers that passed away 
print(train["Survived"].value_counts()) 
0    549 
1    342 
Name: Survived, dtype: int64

# As proportions 
print(train["Survived"].value_counts(normalize = True)) 
0    0.616162 
1    0.383838 
Name: Survived, dtype: float64

# Males that survived vs males that passed away 
print(train["Survived"][train["Sex"] == 'male'].value_counts()) 
0    468 
1    109 
Name: Survived, dtype: int64

# Females that survived vs females that passed away 
print(train["Survived"][train["Sex"] == 'female'].value_counts()) 
1    233 
0     81 
Name: Survived, dtype: int64

# Normalized male survival 
print(train["Survived"][train["Sex"] == 'male'].value_counts 
(normalize=True)) 
0    0.811092 
1    0.188908 
Name: Survived, dtype: float64

# Normalized female survival 
print(train["Survived"][train["Sex"] == 'female'].value_counts 
(normalize=True)) 
1    0.742038 
0    0.257962 
Name: Survived, dtype: float64

We can see that 74 percent of females survived, and only 18 percent of 
males survived. Therefore, for a random person, we might adjust our  
guess to say that they survived if they were female, but not if they were 
male.

Remember that the goal at the beginning of this section was to create a 
Survived column in the test data that contains a prediction for each pas-
senger. At this point, we could create a Survived column and fill in “1” 
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(meaning “yes, this passenger survived”) for 74 percent of the females 
and “0” (meaning “no, this passenger did not survive”) for the remaining 
females. We could fill in “1” for 18 percent of the male passengers and “0” 
for 81 percent of the remaining males.

But we won’t, because that would mean assigning probable outcomes 
randomly based only on gender. We know there are other factors in the 
data that influence the outcome. (If you’re truly curious to see the nitty-
gritty of how this is determined, I encourage you to look at the DataCamp 
tutorial or something similar online.) What about women traveling third 
class? Women traveling first class? Women traveling with spouses? Women 
traveling with children? This quickly becomes tedious to calculate manu-
ally, so we’re going to train a model to do the guessing for us based on the 
factors that we know.

To construct the model, we’re going to use a decision tree, a type of algo-
rithm. Remember, there are a handful of algorithms that are standard in 
machine learning. They have names like decision tree, or random for-
est, or artificial neural network, or naive Bayes, or k-nearest neighbor, or 
deep learning. Wikipedia’s list of machine-learning algorithms is quite 
comprehensive. 

These algorithms come packaged into software like pandas. Very few 
people write their own algorithms for machine learning; it’s much easier to 
use one that already exists. Writing a new algorithm is like writing a new 
programming language. You really have to care a lot and you have to devote 
a lot of time to doing it. I’m going to wave my hands and say “math” to 
explain what happens inside the model. Sorry. If you really want to know, 
I encourage you to read more about it. It’s very interesting, but it’s beyond 
the scope of the current discussion. 

Now, let’s train the model on the training data. We know from our 
exploratory analysis that the features that matter are fare class and sex. We 
want to create a guess for survival. We already know whether the passengers 
in the training data survived or not. We’re going to make the model guess, 
then compare the guesses to reality. Whatever the percentage is that we get 
right is our accuracy number.

Here’s an open secret of the big data world: all data is dirty. All of it. 
Data is made by people going around and counting things or made by sen-
sors that are made by people. In every seemingly orderly column of num-
bers, there is noise. There is mess. There is incompleteness. This is life. The 
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problem is, dirty data doesn’t compute. Therefore, in machine learning, 
sometimes we have to make things up to make the functions run smoothly.

Are you horrified yet? I was, the first time I realized this. As a journalist, 
I don’t get to make anything up. I need to fact-check each line and justify 
it for a fact-checker or an editor or my audience—but in machine learning, 
people often make stuff up when it’s convenient.

Now, in physics you can do this. If you want to find the temperature at 
point A inside a closed container, you take the temperature at two other 
equidistant points (B and C) and assume that the temperature at point A 
is halfway between the B and C temperatures. In statistics … well, this is 
how it works, and the missing-ness contributes to the inherent uncertainty 
of the whole endeavor. We’ll use a function called fillna to fill in all of the 
missing values:

train["Age"] = train["Age"].fillna(train["Age"].median())

The algorithm can’t run with missing values. Thus, we need to make up the 
missing values. Here, DataCamp recommends using the median. 

Let’s take a look at the data to see what’s in there: 

# Print the train data to see the available features 
print(train)

PassengerId Survived Pclass \

0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
5 6 0 3
6 7 0 1
7 8 0 3
8 9 1 3
9 10 1 2

10 11 1 3
11 12 1 1
12 13 0 3
13 14 0 3
14 15 0 3
15 16 1 2
16 17 0 3
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PassengerId Survived Pclass \

17 18 1 2
18 19 0 3
19 20 1 3
20 21 0 2
21 22 1 2
22 23 1 3
23 24 1 1
24 25 0 3
25 26 1 3
26 27 0 3
27 28 0 1
28 29 1 3
29 30 0 3

.. … … …
861 862 0 2
862 863 1 1
863 864 0 3
864 865 0 2
865 866 1 2
866 867 1 2
867 868 0 1
868 869 0 3
869 870 1 3
870 871 0 3
871 872 1 1
872 873 0 1
873 874 0 3
874 875 1 2
875 876 1 3
876 877 0 3
877 878 0 3
878 879 0 3
879 880 1 1
880 881 1 2
881 882 0 3
882 883 0 3
883 884 0 2
884 885 0 3
885 886 0 3
886 887 0 2
887 888 1 1
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PassengerId Survived Pclass \

888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \

0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence 

Briggs Th…
female 38.0 1

2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May 

Peel)
female 35.0 1

4 Allen, Mr. William Henry male 35.0 0
5 Moran, Mr. James male 28.0 0
6 McCarthy, Mr. Timothy J male 54.0 0
7 Palsson, Master. Gosta Leonard male 2.0 3
8 Johnson, Mrs. Oscar W (Elisabeth 

Vilhelmina Berg)
female 27.0 0

9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
12 Saundercock, Mr. William Henry male 20.0 0
13 Andersson, Mr. Anders Johan male 39.0 1
14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0
15 Hewlett, Mrs. (Mary D Kingcome) female 55.0 0
16 Rice, Master. Eugene male 2.0 4
17 Williams, Mr. Charles Eugene male 28.0 0
18 Vander Planke, Mrs. Julius (Emelia Maria 

Vande…
female 31.0 1

19 Masselmani, Mrs. Fatima female 28.0 0
20 Fynney, Mr. Joseph J male 35.0 0
21 Beesley, Mr. Lawrence male 34.0 0
22 McGowan, Miss. Anna “Annie” female 15.0 0
23 Sloper, Mr. William Thompson male 28.0 0
24 Palsson, Miss. Torborg Danira female 8.0 3
25 Asplund, Mrs. Carl Oscar (Selma Augusta 

Emilia…
female 38.0 1

26 Emir, Mr. Farred Chehab male 28.0 0
27 Fortune, Mr. Charles Alexander male 19.0 3
28 O’Dwyer, Miss. Ellen “Nellie” female 28.0 0
29 Todoroff, Mr. Lalio male 28.0 0

.. … … … …
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Name Sex Age SibSp \

861 Giles, Mr. Frederick Edward male 21.0 1
862 Swift, Mrs. Frederick Joel (Margaret 

Welles Ba…
female 48.0 0

863 Sage, Miss. Dorothy Edith “Dolly” female 28.0 8
864 Gill, Mr. John William male 24.0 0
865 Bystrom, Mrs. (Karolina) female 42.0 0
866 Duran y More, Miss. Asuncion female 27.0 1
867 Roebling, Mr. Washington Augustus II male 31.0 0
868 van Melkebeke, Mr. Philemon male 28.0 0
869 Johnson, Master. Harold Theodor male 4.0 1
870 Balkic, Mr. Cerin male 26.0 0
871 Beckwith, Mrs. Richard Leonard (Sallie 

Monypeny)
female 47.0 1

872 Carlsson, Mr. Frans Olof male 33.0 0
873 Vander Cruyssen, Mr. Victor male 47.0 0
874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28.0 1
875 Najib, Miss. Adele Kiamie “Jane” female 15.0 0
876 Gustafsson, Mr. Alfred Ossian male 20.0 0
877 Petroff, Mr. Nedelio male 19.0 0
878 Laleff, Mr. Kristo male 28.0 0
879 Potter, Mrs. Thomas Jr (Lily Alexenia 

Wilson)
female 56.0 0

880 Shelley, Mrs. William (Imanita Parrish 
Hall)

female 25.0 0

881 Markun, Mr. Johann male 33.0 0
882 Dahlberg, Miss. Gerda Ulrika female 22.0 0
883 Banfield, Mr. Frederick James male 28.0 0
884 Sutehall, Mr. Henry Jr male 25.0 0
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen “Carrie” female 28.0 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
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Parch Ticket Fare Cabin Embarked

4 0 373450 8.0500 NaN S
5 0 330877 8.4583 NaN Q
6 0 17463 51.8625 E46 S
7 1 349909 21.0750 NaN S
8 2 347742 11.1333 NaN S
9 0 237736 30.0708 NaN C

10 1 PP 9549 16.7000 G6 S
11 0 113783 26.5500 C103 S
12 0 A/5. 2151 8.0500 NaN S
13 5 347082 31.2750 NaN S
14 0 350406 7.8542 NaN S
15 0 248706 16.0000 NaN S
16 1 382652 29.1250 NaN Q
17 0 244373 13.0000 NaN S
18 0 345763 18.0000 NaN S
19 0 2649 7.2250 NaN C
20 0 239865 26.0000 NaN S
21 0 248698 13.0000 D56 S
22 0 330923 8.0292 NaN Q
23 0 113788 35.5000 A6 S
24 1 349909 21.0750 NaN S
25 5 347077 31.3875 NaN S
26 0 2631 7.2250 NaN C
27 2 19950 263.0000 C23 C25 C27 S
28 0 330959 7.8792 NaN Q
29 0 349216 7.8958 NaN S

.. … … … … …
861 0 28134 11.5000 NaN S
862 0 17466 25.9292 D17 S
863 2 CA. 2343 69.5500 NaN S
864 0 233866 13.0000 NaN S
865 0 236852 13.0000 NaN S
866 0 SC/PARIS 2149 13.8583 NaN C
867 0 PC 17590 50.4958 A24 S
868 0 345777 9.5000 NaN S
869 1 347742 11.1333 NaN S
870 0 349248 7.8958 NaN S
871 1 11751 52.5542 D35 S
872 0 695 5.0000 B51 B53 B55 S
873 0 345765 9.0000 NaN S
874 0 P/PP 3381 24.0000 NaN C

I 7 : 0 : H H 9 7A C CH AA C9 . , BEIH 0 IC: H7C: H A: ,7B8 : 0 4 1
99 : EH B8 1 2I H -8 , CH 7A

, 7H : B 7 C H C C   

,
E

HM
0

4
1

AA
H

:



Machine Learning 109

Parch Ticket Fare Cabin Embarked

875 0 2667 7.2250 NaN C
876 0 7534 9.8458 NaN S
877 0 349212 7.8958 NaN S
878 0 349217 7.8958 NaN S
879 1 11767 83.1583 C50 C
880 1 230433 26.0000 NaN S
881 0 349257 7.8958 NaN S
882 0 7552 10.5167 NaN S
883 0 C.A./SOTON 34068 10.5000 NaN S
884 0 SOTON/OQ 392076 7.0500 NaN S
885 5 382652 29.1250 NaN Q
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q
[891 rows x 12 columns]

If you read all of those hundreds of lines, bravo—but if you skipped 
ahead, I’m not surprised. I printed many rows of data here, instead of using 
a small subset, in order to illustrate what it feels like to be a data scien-
tist. Working with columns of numbers feels value-neutral and occasion-
ally tedious. There’s a certain amount of dehumanization that occurs when 
you deal only with numbers. It’s not easy to remember that each row in a 
dataset represents a real person with hopes, dreams, a family, and a history. 

Now that we’ve looked at the raw data, it’s time to start working with 
it. Let’s turn it into arrays, which are structures that the computer can 
manipulate:

# Create the target and features numpy arrays: target, 
features_one 
target = train["Survived"].values

# Preprocess 
encoded_sex = preprocessing.LabelEncoder()

# Convert into numbers 
train.Sex = encoded_sex.fit_transform(train.Sex) 
features_one = train[["Pclass," "Sex," "Age," "Fare"]].values
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# Fit the first decision tree: my_tree_one 
my_tree_one = tree.DecisionTreeClassifier() 
my_tree_one = my_tree_one.fit(features_one, target)

What we’re doing is running a function called fit on the decision tree 
classifier called my_tree_one. The features we want to consider are Pclass, 
Sex, Age, and Fare. We’re instructing the algorithm to figure out what rela-
tionship among these four predicts the value in the target field, which is 
Survived:

# Look at the importance and score of the included features 
print(my_tree_one.feature_importances_) 
[ 0.12315342  0.31274009  0.22675108  0.3373554 ]

The feature_importances attribute shows the statistical significance of each 
predictor.

The largest number in this group of values is the considered the most 
important: 

Pclass = 0.1269655  
Sex = 0.31274009  
Age = 0.23914906  
Fare = 0.32114535

Fare is the largest number. We can conclude that passenger fare is the most 
important factor in determining whether a passenger survived the Titanic 
disaster.

At this point in our data analysis, we can run a function to show exactly 
how accurate our calculation is within the mathematical constraints of the 
universe represented by this data. Let’s use the score function to find the 
mean accuracy:

print(my_tree_one.score(features_one, target)) 
0.977553310887

Wow, 97 percent! That feels great. If I got a 97 percent on an exam, I’d 
be perfectly content. We could call this model 97 percent accurate. The 
machine just “learned” in that it constructed a mathematical model. The 
model is stored in the object called my_tree_one.

Next, we’ll take this model and apply it to the set of test data. Remember: 
the test data doesn’t have a Survived column. Our job is to use the model 
to predict whether each passenger in the test data survived or perished. We 
know that fare is the most important predictor according to this model, but 
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age and sex and passenger class matter mathematically too. Let’s apply the 
model to the test data and see what happens:

# Fill any missing fare values with the median fare 
test["Fare"] = test["Fare"].fillna(test["Fare"].median())

# Fill any missing age values with the median age 
test["Age"] = test["Age"].fillna(test["Age"].median())

# Preprocess  
test_encoded_sex = preprocessing.LabelEncoder() 
test.Sex = test_encoded_sex.fit_transform(test.Sex)

# Extract important features from the test set: Pclass, Sex, 
Age, and Fare 
test_features = test[["Pclass," "Sex," "Age," "Fare"]].values 
print('These are the features:\n') 
print(test_features)

# Make a prediction using the test set and print 
my_prediction = my_tree_one.predict(test_features) 
print('This is the prediction:\n') 
print(my_prediction)

# Create a data frame with two columns: PassengerId & Survived  
# Survived contains the model’s prediction 
PassengerId =np.array(test["PassengerId"]).astype(int) 
my_solution = pd.DataFrame(my_prediction, PassengerId, columns 
= ["Survived"]) 
print('This is the solution in toto:\n') 
print(my_solution)

# Check that the data frame has 418 entries 
print('This is the solution shape:\n') 
print(my_solution.shape)

# Write the solution to a CSV file with the name my_solution.csv 
my_solution.to_csv("my_solution_one.csv," index_label = 
["PassengerId"])

Here’s the output:

These are the features: 
[[  3.       1.      34.5      7.8292] 
 [  3.       0.      47.       7.    ] 
 [  2.       1.      62.       9.6875] …,  
 [  3.       1.      38.5      7.25  ] 
 [  3.       1.      27.       8.05  ] 
 [  3.       1.      27.      22.3583]] 
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This is the prediction: 
[0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 
 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 
 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 
 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 
 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 
 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 
 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 
 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 
 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 
 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0 
 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 
 0 1 1 1 1 0 0 1 0 0 0] 
This is the solution in toto: 
      Survived 
892          0 
893          0 
894          1 
895          1 
896          1 
897          0 
898          0 
899          0 
900          1 
901          0 
902          0 
903          0 
904          1 
905          1 
906          1 
907          1 
908          0 
909          1 
910          1 
911          0 
912          0 
913          1 
914          1 
915          0 
916          1 
917          0 
918          1 
919          1 
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920          1 
921          0 
…            … 
1280         0 
1281         0 
1282         0 
1283         1 
1284         1 
1285         0 
1286         0 
1287         1 
1288         0 
1289         1 
1290         0 
1291         0 
1292         1 
1293         0 
1294         1 
1295         0 
1296         0 
1297         0 
1298         0 
1299         0 
1300         1 
1301         1 
1302         1 
1303         1 
1304         0 
1305         0 
1306         1 
1307         0 
1308         0 
1309         0 
[418 rows x 1 columns] 
This is the solution shape: 
(418, 1)

That new column, Survived, contains a prediction for each of the 418 pas-
sengers listed in the test data set. We can write the predictions to a CSV file 
called my_solution_one.csv, upload the file to DataCamp, and verify that our 
predictions were 97 percent accurate. Ta-da! We just did machine learning. 
It was entry level, but it was machine learning nonetheless. When someone 
says they have “used artificial intelligence to make a decision,” usually they 
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mean “used machine learning,” and usually they went through a process 
similar to the one we just worked through.

We created the Survived column and got a number that we can call 97 
percent accurate. We learned that fare is the most influential factor in a 
mathematical analysis of Titanic survivor data. This was narrow artificial 
intelligence. It was not anything to be scared of, nor was it leading us 
toward a global takeover by superintelligent computers. “These are just sta-
tistical models, the same as those that Google uses to play board games or 
that your phone uses to make predictions about what word you’re saying in 
order to transcribe your messages,” Carnegie Mellon professor and machine 
learning researcher Zachary Lipton told the Register about AI. “They are no 
more sentient than a bowl of noodles.”17

For a programmer, writing an algorithm is that easy. It gets made, it gets 
deployed, it seems to work. Nobody follows up. You maybe try turning the 
dials differently the next time to see if the accuracy seems to go up any. 
You try to get the highest number you can. Then, you move on to the next 
thing.

Meanwhile, out in the world, these numbers have consequences. It 
would be unwise to conclude from this data that people who pay more 
have a greater chance of surviving a maritime disaster. Nevertheless, a cor-
porate executive could easily argue that it would be statistically legitimate 
to conclude this. If we were calculating insurance rates, we could say that 
people who pay higher ticket prices are less likely to die in iceberg accidents 
and thus represent a lower risk of early payout. People who pay more for 
tickets are wealthier than people who don’t. This would allow us to charge 
rich people less for insurance. That’s bad! The point of insurance is that risk 
is distributed evenly across a large pool of people. We’ve made more money 
for the insurance company, but we’ve not promoted the greatest good.

These types of computational techniques are used for price optimization, 
or grouping customers into very small segments to offer different prices to 
different groups. Price optimization is used in industries from insurance 
to travel—and it often results in price discrimination. A 2017 analysis by 
ProPublica and Consumer Reports found that in California, Illinois, Texas, 
and Missouri, some major insurers charged people who lived in minority 
neighborhoods as much as 30 percent more than people who lived in other 
areas with similar accident costs.18 A 2014 analysis by the Wall Street Jour-
nal found that customers were being charged different prices for the same 

I : 0 : H H 9 A C CH AA C9 . , BEIH 0 IC: H C: H 6 A: , B8 : 0 1
99 : 3 EH B8 1 2I H -8 , CH A

, H : B C H C C   

,
E

HM
0

1
AA

H
:



Machine Learning 115

ordinary stapler on Staples.com. The price was higher or lower based on the 
customer’s estimated zip code.19 Christo Wilson, David Lazer, and a team 
of other Northeastern University researchers found different prices were 
offered to customers on Homedepot.com and on travel sites depending on 
whether the users viewed the sites on mobile devices or desktops.20 Amazon 
admitted to experimenting with differential pricing in 2000. CEO Jeff Bezos 
apologized, calling it “a mistake.”21

In an unequal world, if we make pricing algorithms based on what the 
world looks like, women and poor and minority customers inevitably get 
charged more. Math people are often surprised by this; women and poor 
and minority people are not surprised by this. Race, gender, and class 
influence pricing in a variety of obvious and devious ways. Women are 
charged more than men for haircuts, dry cleaning, razors, and even deodor-
ant. Asian-Americans are twice as likely to be charged more for SAT prep 
courses.22 African American restaurant servers make less in tips than white 
colleagues.23 Being poor often means paying more for necessities. Furniture 
on installment plans costs more than outright purchase. Payday loans have 
a far higher interest rate than bank loans. Housing is considered afford-
able if it takes 30 percent or less of a household’s monthly income, but 
poor renters are often stuck paying more for housing because of a variety 
of factors related to economic instability. “In Milwaukee, the majority of 
poor renters devote at least half their income to rent, and a third pay at 
least 80 percent,” sociologist Pat Sharkey writes in a review of two ethnog-
raphies, Matthew Desmond’s Evicted: Poverty and Profit in the American City 
and Mitchell Dunier’s Ghetto: The Invention of a Place, the History of an Idea.24 
Inequality is unfair, but it’s not uncommon. If machine-learning models 
simply replicate the world as it is now, we won’t move toward a more just 
society. “The allure of the technology is clear—the ancient aspiration to 
predict the future, tempered with a modern twist of statistical sobriety,” law 
professor and AI ethics expert Frank Pasquale writes in The Black Box Society. 
“Yet in a climate of secrecy, bad information is as likely to endure as good, 
and to result in unfair and even disastrous predictions.”25

Part of the reason we run into problems when making social decisions 
with machine learning is that the numbers camouflage important social 
context. In the Titanic example, we picked a classifier, survival. We used 
features to predict our classifier, but there are other possible factors. For 
example, our Titanic dataset includes only age, sex, and the other factors. 
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We built our predictor based on the information we had. However, because 
this was a human and not a mathematical event, there were other factors 
at work. 

Let’s look at the night of the Titanic disaster. The Titanic received mul-
tiple warnings of ice from nearby ships over the course of the day on April 
14, 1912. At 11:40 p.m., the ship hit an iceberg. Just after midnight, the 
Titanic’s captain, Edward John Smith, mustered the passengers and began 
to evacuate the ship. Smith issued an order: “Put the women and children 
in and lower away.” First Officer William Murdoch was in charge of the 
lifeboats on the starboard side. Second Officer Charles Lightoller was in 
charge of the boats on the port side. Each man interpreted the captain’s 
command differently. Murdoch thought the captain meant women and 
children first. Lightoller thought the captain meant women and children 
only. Murdoch let men onto the boats if all the nearby women and children 
had been loaded. Lightoller loaded all the women and children nearby, 
then lowered the boat even if it had empty seats. Both men let the boats 
down into the water even if the full capacity of sixty-five people had not 
been reached. There were not enough lifeboats for the people on board: 
Titanic carried only twenty boats for a ship rated to carry 3,547 people. The 
best records show that the ship carried a light load of 892 crew members 
and 1,320 passengers. 

There is a potentially interesting test to be done on lifeboat numbers. 
Murdoch’s boats on the starboard side had odd numbers; Lightoller’s boats 
had even numbers. Men probably survived at a different rate according 
to their lifeboat number, because Lightoller, who was in charge of even-
numbered boats, didn’t load men. However, the lifeboat number isn’t in 
the data. This is a profound and insurmountable problem. Unless a factor is 
loaded into the model and represented in a manner a computer can calcu-
late, it won’t count. Not everything that counts is counted. The computer 
can’t reach out and find out the extra information that might matter. A 
human can.

There’s also the problem of false causality. If we did have the lifeboat 
numbers, from a computational perspective it might look like men in odd-
numbered lifeboats had a better chance of surviving the Titanic disaster. If 
we made decisions based on data, we might decide that all lifeboats should 
be odd-numbered so that we could save more men in case of emergency. 
Of course, this is ridiculous; it was the officer, not the number of the boat, 
that made the difference.
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Two young men also confound the pure mathematical explanation. 
Walter Lord’s A Night to Remember, a bestselling nonfiction account of the 
Titanic disaster, is a moving account of the ship’s last hours.26 Lord tells the 
story of Jack Thayer, a seventeen-year-old who boarded the Titanic in Cher-
bourg, France, after a long European holiday with his parents. Thayer made 
a friend on the ship, Milton Long, another young man his age traveling 
in first class. As the crisis on the ship intensified, both young men helped 
to get other passengers to safety. By 2:00 a.m., almost all the lifeboats had 
launched, with Long and Thayer handing women and children into the 
lifeboats. By 2:15 a.m., the last lifeboats had washed away in the swells. The 
ship was listing to port. There was an explosion; a wave crashed over the 
boat deck. Chef John Collins was standing on the boat deck holding a baby, 
helping a steward and a woman from steerage who was traveling with two 
children. He and the others were swept out to sea. The baby was torn out of 
his arms by the force of the wave.

Thayer and Long saw the chaos on the decks. Suddenly, the lights winked 
out; the water had reached the fireboxes in boiler room two. The only light 
came from the moon and the stars and the lanterns on the lifeboats slowly 
rowing away from the sinking ship. The second funnel collapsed with a 
crash. Thayer and Long looked around: the lifeboats were gone and no res-
cue ship was in sight. They realized the moment had come to jump. They 
shook hands. They wished each other good luck. Lord writes:

Long put his legs over the rail, while Thayer straddled it and began unbuttoning his 
overcoat. Long, hanging over the side and holding the rail with his hands, looked up 
at Thayer and asked, “You’re coming, boy?”

“Go ahead, I’ll be right with you,” Thayer reassured him.
Long slid down, facing the ship. Ten seconds later Thayer swung his other leg 

over the rail and sat facing out. He was about ten feet above the water. Then with a 
push he jumped as far out as he could. 

Of these two techniques for abandoning ship, Thayer’s was the only one that 
worked.

Thayer survived by swimming to a nearby overturned lifeboat and cling-
ing to it with forty others. He watched as the Titanic cracked in half, the 
bow and stern slipping under the water amid a field of debris. Thayer heard 
people crying in the water. It sounded like locusts, he thought. Eventu-
ally, lifeboat twelve picked up Thayer and the others from the icy water. 
Help arrived hours later. Thayer shivered in the lifeboat until 8:30 the next 
morning, when the passengers were rescued by the Carpathia.
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Thayer and Long were young men of the same age, same physical abil-
ity, same social status, and absolutely the same opportunity to survive the 
disaster. The difference came down to a jump. Thayer leaped out as far as he 
could away from the ship; Long dropped down next to the ship. Long was 
sucked into the abyss; Thayer wasn’t. What I find unsettling is that what-
ever the computer predicts for Thayer or Long, it will be wrong. The predic-
tion is based only on fare class, age, and sex—but what really happened was 
a difference of jumps. The computer just fundamentally misunderstands. 
Long’s death, the randomness of it, is why our statistical prediction of who 
survived and who died on the Titanic will never be 100 percent accurate—
no statistical prediction can or will ever be 100 percent accurate—because 
human beings are not and never will be statistics.

This speaks to a principle called the unreasonable effectiveness of data. 
Unless you are alert to the possibilities of discrimination and disarray, AI 
seems like it works beautifully. One of my favorite explanations of the 
search to explain the world through computer science comes from a paper 
by Google researchers Alon Halevy, Peter Norvig, and Fernando Pereira. 
They write:

Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in the 
Natural Sciences” examines why so much of physics can be neatly explained with 
simple mathematical formulas such as f=ma or e=mc2. Meanwhile, sciences that in-
volve human beings rather than elementary particles have proven more resistant 
to elegant mathematics. Economists suffer from physics envy over their inability 
to neatly model human behavior. An informal, incomplete grammar of the English 
language runs over 1,700 pages. Perhaps when it comes to natural language proc-
essing and related fields, we’re doomed to complex theories that will never have the 
elegance of physics equations. But if that’s so, we should stop acting as if or goal is 
to author extremely elegant theories, and instead embrace complexity and make use 
of the best ally we have: the unreasonable effectiveness of data.27

Data is unreasonably effective—seductively so, even. This explains why 
we can build a classifier that seems to predict with 97 percent accuracy 
whether a passenger survives the Titanic disaster and why a computer can 
defeat a human Go champion. It also explains why, when we look closely 
at what happens during the machine-learning process, the machine doesn’t 
take into account any of the flukes that humans know happen in real-life 
disaster situations. Data is very effective. However, the data-driven approach 
ignores a number of factors that humans think matter a great deal. 
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Law and society are set up to accommodate all of the things that humans 
think matter. Data-driven decisions rarely fit with these complex sets of 
rules. The same unreasonable effectiveness of data appears in translation, 
voice-controlled smart home gadgets, and handwriting recognition. Words 
and word combinations are not understood by machines the way that 
humans understand them. Instead, statistical methods for speech recog-
nition and machine translation rely on vast databases full of short word 
sequences, or n-grams, and probabilities. Google has been working on these 
problems for decades and has the best scientific minds on these topics, and 
they have more data than anyone has ever before assembled. The Google 
Books corpus, the New York Times corpus, the corpus of everything every-
one has ever searched for using Google: it turns out that when you load 
all of this in and assemble a massive database of how often words occur 
near each other, it’s unreasonably effective. Let’s take something simple. 
In n-grams, the word boat usually occurs near water, so the two are prob-
ably related. The probability is higher that boat is closer to water than to 
electorate or stink bug, so a search pulls up terms or documents related to 
boats and water rather than to boats and stink bugs. People generally talk 
about the same types of things and search for the same types of things, 
and common knowledge is really quite common. The machine is not really 
learning; the search process is just inspired by human learning. If you read 
the math, which is all posted online, it’s very clear that these calculations 
are not magic and are just math. The computer will get enough things right 
enough of the time that we may be tempted to call it mostly correct—but it 
will get things right for exactly the wrong reasons.

Because social decisions are about more than just calculations, problems 
will always ensue if we use data alone to make decisions that involve social 
and value judgments. Traveling first class on the Titanic meant someone 
was more likely to survive—but it would be wrong to deploy a model that 
suggests first-class travelers deserve to survive disasters more than people 
who travel second or third class. Nor should we do other things that derive 
from a flawed model like the one we created. Our Titanic model could be 
used to justify charging first-class passengers less for travel insurance, but 
that’s absurd: we shouldn’t penalize people for not being rich enough to 
travel first class. Most of all, we should know by now that there are some 
things machines will never learn and that human judgment, reinforce-
ment, and interpretation is always necessary.
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