Quantum spooks

Sunglasses

Two glasses

- Half of the unpolarized light (background) makes it through the rearmost glasses. Only vertically polarized light makes it through.
- Since forward glasses only let vertical polarization through, all the light that got through the first pair make it through the second.

Two glasses

- Half of the unpolarized light (background) makes it through the rearmost glasses. Only horizontally polarized light makes it through.
- Since forward glasses only let vertical polarization through, all the light that got through the first pair is blocked by the second pair.

Only relative orientation matters

Mixing sets

Mixing sets

 Two glasses of the same 'set' (frame color) gives either all of light through the first or none.

 Two glasses from different sets always gives 1/2 of light through the first pair.

Adding a third pair of glasses

Adding a third pair of glasses

Order matters!

Wearing sunglasses at night

Diane Knutson, International Dark-Sky Association

Fraction of photons making it through

Fraction of photons making it through

1/2 * 1/2 * 1/2 = 1/8

Deterministic or Random

 If two glasses from the same set (frame color), whether a photon makes it through the next pair is deterministic (all or none)

 If two glasses from different sets, probability of photon making it through the second pair is *random* (always 50-50)

Deterministic and random

- We've made two sets of glasses (green or blue frame color) that are internally deterministic but mutually random.
- A deep feature of quantum mechanics