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Outline

• Review


• Finding your background distribution


• Common statistical distributions


• Analytic propagation & analysis chains


• Convolution & central limit theorem 



Key statistical steps

• Clearly state the question (& turn into math)


• Determine the background distribution


• Integrate background to find probability


• Convert probability into equivalent sigma
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Measuring the background



Two related issues:

• Finding signal-free 
data


• Finding the ‘shape’ of 
the background



Measuring the Background



Take signal-free data



LSST calibration

r- :.

 

 

2.1  CSS Requirements  

The calibration screen system requirements have been updated recently as a result of self-calibration algorithmic 

improvements. The calibration screen system must uniformly illuminate the entire diameter telescope pupil over its field 

of view at desired monochromatic wavelengths in a way that allows the measurement of the total system throughput 

from entrance pupil to the digitization of charge in the camera electronics. The maximum spatial variation in the 

illumination was relaxed to 10% uniformity. 

Two types of sources are required: 1) a broadband "white" light (WL) with a known spectral energy distribution without 

discontinuities from 320nm to 1100nm. The WL intensity emitted by the calibration screen shall be sufficient to produce 

a spectral radiance of at least 3 milli-Jansky per arcsec
2
. 2) a tunable monochromatic light from 320nm to 1125nm with a 

maximum line width of 1nm and a minimum tuning step of 1nm. Its center wavelength must be known to a maximum 

uncertainty (1-sigma) of 1nm. 

The optical flux emitted from the screen per exposure must be known to a relative precision of 0.2% RMS in the (g, r, i 

and z) filter bands and 0.3% RMS for the (u, y) filter bands. 

The CSS shall be usable during the afternoon to permit long bandpass scan calibrations using the monochromatic light 

source. Further, the screen shall be usable during the hour just before evening twilight and the hour just after morning 

twilight of each night’s observing. Setting up the CSS and taking calibration data shall be possible within 30 minutes and 

it shall not take more than 5 seconds to change the wavelength of the monochromatic light source. Altogether, a filter 

scan shall be accomplished in 4 hours or less. 

2.2 Calibration Screen  

The previous design of the calibration screen incorporated an array of individual projectors pointed toward the telescope 

to fill the entrance pupil in order to meet the spatial uniformity requirements [7]. Thanks to the requirement relaxation, 

this design has been replaced with a simpler 10m diameter reflective surface screen and a new position was designated 

for its location on the dome (figure 1). The flat field screen will be at a distance approximately 13m away from the 

M1M3 mirror vertex. It is expected to be built from multiple panels and installed in the dome using a temporary hoist 

attached to the dome structure. The screen will have a 4m diameter hole in its center to match the large central 

obscuration of the LSST optical design. This central obscuration will be centered on one of the dome air vents to 

minimize the obstruction to the air flow flushing inside the dome when the air vents are opened. 

 

Figure 1: Calibration screen located inside the LSST dome 

During calibration, the telescope will be pointed toward the screen at an elevation angle of 23 degrees. A baffle will be 

located around the outside periphery of the screen. Additionally, the dome section located behind the screen will be 

either painted black or a retractable cover will be installed in the central obscuration to minimize scattered light during 
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10 meter screen inside the dome



LSST screen specs:

• Illuminated with white light (UV to IR) and a tunable laser


• Emission must be known to 0.2% across the surface


• Used twice a day (afternoon & morning)


• Must not take more than 4 hours(!)



Manipulate data to make signal disappear

Examples:


• Randomly shuffling the data so sources disappear


• Subtracting neighboring datasets


• Requires signal be slowly varying



Hope for isolated or rare signals



Isolated signals

• Identify energies, 
times, or locations 
where you don’t think 
there is a signal and 
extrapolate to the 
region of interest


• Explicit assumptions 
about background 
behavior 



Rare signals

• Find a time or area 
where you are fairly 
certain there is no 
signal



Simulate your background (Monte Carlo)

Make fake data without your signal



GEANT

• Purpose built particle 
physics simulator


• Entire instruments in 
simulation


• Conferences on how 
to make it more 
precise



Simulations fall in two categories

• Helping to understand how the instrument works


• Calculating fake background data (must be much more 
precise)



Step-by-step guide to Parametrizing the 
Background



1) Determine how to measure ‘signal-free’ 
background 

• Take signal-free data


• Manipulate the data to remove the signal


• Hope for isolated or rare signals


• Monte Carlo



2) Make a histogram of background data on log 
plot

Always use a semilog plot!



3) Think about what kinds of pdfs you might expect

• What creates the background?


• Thermal noise, radioactive backgrounds, cosmic rays, 
other uninteresting sources, …


• What systematics should I worry about?


• Is background stable in time, detector, energy, …



4) Use to build a model of the background

The better the background model, the better the science



Useful statistical distributions

Matlab



Analysis chains & analytic propagation



Calibration

Data cleaning

Background removal

Intermediate 
integration

Quality assessment & 
cleaning pt 2

PS transform

Data
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Example

• 2D symmetric Gaussian (normal); amplitude is Rayleigh

https://en.wikipedia.org/wiki/Normal_distribution#Related_distributions
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How distributions change

Convolution & the central limit theorem



Example: power of random electric field
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Average (or sum) is convolution of pdfs

*
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Convolutions

Brian Amberg

( f ⋆ g)(t) = ∫
∞

−∞
f(τ)g(t − τ)dτ



Matlab playing



Probability distributions of averages

• Averaging involves repeated convolution of pdfs


• Leads to central limit theorem


• Usually converges quickly to a Gaussian distribution



My thesis
Number Observed = 1 Number Observed = 8

Number Observed = 256 Number Observed = 16,384

Figure 5.1: These plots are examples of the P (w̄|g(w, Nobs)) distributions for four
selected Nobs values from a representative set of background data. Note that both
the horizontal and vertical scales change dramatically from one plot to the next as
the distribution of w̄ narrows, and the red line for the Nobs = 16, 384 plot shows
a Gaussian fit covering 41 orders of magnitude in probability. The Gaussian
approximation is not used until Nobs > 30, 000 to allow the approximation to
become more exact.
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