Class 3: Statistical building blocks

Miguel F. Morales Bryna Hazelton

Outline

- Review
- Finding your background distribution
- Common statistical distributions
- Analytic propagation & analysis chains
- Convolution & central limit theorem

Key statistical steps

- Clearly state the question (& turn into math)
- Determine the background distribution
- Integrate background to find probability
- Convert probability into equivalent sigma

Measuring the background

Two related issues:

- Finding signal-free data
- Finding the 'shape' of the background

Measuring the Background

Take signal-free data

LSST calibration

Figure 1: Calibration screen located inside the LSST dome

10 meter screen inside the dome

LSST screen specs:

- Illuminated with white light (UV to IR) and a tunable laser
- Emission must be known to 0.2% across the surface
- Used twice a day (afternoon & morning)
- Must not take more than 4 hours(!)

Manipulate data to make signal disappear

Examples:

- Randomly shuffling the data so sources disappear
- Subtracting neighboring datasets
- Requires signal be slowly varying

Hope for isolated or rare signals

Isolated signals

- Identify energies, times, or locations where you don't think there is a signal and extrapolate to the region of interest
- Explicit assumptions about background behavior

Rare signals

 Find a time or area where you are fairly certain there is no signal

Simulate your background (Monte Carlo)

Make fake data without your signal

GEANT

- Purpose built particle physics simulator
- Entire instruments in simulation
- Conferences on how to make it more precise

Simulations fall in two categories

- Helping to understand how the instrument works
- Calculating fake background data (must be much more precise)

Step-by-step guide to Parametrizing the Background

1) Determine how to measure 'signal-free' background

- Take signal-free data
- Manipulate the data to remove the signal
- Hope for isolated or rare signals
- Monte Carlo

2) Make a histogram of background data on log plot

Always use a semilog plot!

3) Think about what kinds of pdfs you might expect

- What creates the background?
 - Thermal noise, radioactive backgrounds, cosmic rays, other uninteresting sources, ...
- What systematics should I worry about?
 - Is background stable in time, detector, energy, ...

4) Use to build a model of the background

The better the background model, the better the science

Useful statistical distributions

Matlab

Analysis chains & analytic propagation

Error

Model

Example

• 2D symmetric Gaussian (normal); amplitude is Rayleigh

Error

Model

How distributions change

Convolution & the central limit theorem

Example: power of random electric field

Average (or sum) is convolution of pdfs

Convolutions

Brian Amberg

Matlab playing

Probability distributions of averages

- Averaging involves repeated convolution of pdfs
- Leads to central limit theorem
- Usually converges quickly to a Gaussian distribution

My thesis

