Class 7: Analysis plan & final project

Miguel F. Morales Bryna Hazelton

Questions

- Big questions: what you want to know in the end
- · Little questions: what should data look like at each step
- Worries: Concerns about the analysis as a whole, but best answered with well understood intermediate products.

Little steps

Break your analysis problem into a few simple steps.

Examples:

- Filtering data in a specific way (throw outliers on metric A)
- Transforming the data (e.g. averaging, taking a Fourier Transform)
- A calibration step
- Determining or transforming units (e.g. milliVolts to keV).

Predict background at each step

Examples:

- Unit or axis change (mV->keV, or uncalibrated to calibrated)
- Filtering or removal of outliers (data quality cuts)
- A mathematical transformation (average, square, Fourier Transform).

Can be placeholders but think about the background and how it changes.

Develop a list of worries & tests

Make a list of worries

Take your time, creative & concrete both useful

Develop a test for each

jackkinfe, specific plot, or statistical test

Link to analysis step(s) where test is best performed

Organize

GitHub issues are great here

- Self-contained analysis steps & code
- Linking of tests to specific analysis & testing code
- Documenting progress on worries (memos also great)
- Checking off of worries (closing issues)
- Ties in with more advanced techniques, e.g. provenance

TANIT. PANIC.

Your assignment

- Design an analysis chain
 - Break into small steps
 - Predict background at each step
- Make a list of worries
 - Develop a jackknife or test for each worry
 - Determine at which step(s) the test is best done
- Organize your work, preferably in GitHub
- Describe which parts of your mini-analysis to implement for final project

