Class 10: Confidence intervals

Miguel F. Morales Bryna Hazelton Frequentist vs. Bayesian

Common statistical questions

- Mathematical Am I confident this is a real signal?
- I am confident I saw something, what was the real signal strength/level?
- I didn't see anything, how faint/small must the signal have been for me <u>not</u> to see it?

- What if you have a high σ detection, and now you want to know what the accuracy of your measurement is?

Example statistical question:

 If I performed the same measurement many times, what range of signal values would I observe?

Simulation approach

```
size = 10000;
noise = randn(1,size)*0.1;
signal = zeros(1,size);
signal(randi(numel(signal),[1,500])) = 2;
obssiganl = noise + signal;
```


Statistical question:

 If I performed the same measurement many times, what range of signal values would I observe?

Even if the signal strength is constant, we observe a range of measurements

Turn statistical question around:

• If I measure a signal once, what range of true signal strengths could have given me the same observation?

Test with simulation of two input signals (2.0 & 2.2)

An asside in math notation

Read as:

• Given a particular true signal, what is the probability of getting a particular data value?

$P(\text{data} | \text{signal}_{\mathrm{T}})$

An asside in math notation

$P(\text{data} | \text{signal}_{\mathrm{T}})$

Two separate questions

- A. If I performed the same measurement many times, what range of observed signal values (data) would I observe? $P(\text{data} | \text{signal}_{\text{T}})$
- B. If I measure a signal once (data), what is the probability of the true signal strengths? $P(\text{signal}_T | \text{data})$

Bayes' theorem

- Formally can change questions and calculate the desired $P(signal_T | data)$
- In practice must be used with great care

Confidence interval

Simulated observations

How to make

- Start with background (model or data)
- Inject fake signals of varying strength
- Measure observed signal
- Histogram true signal vs. observed signal

Simulated observations

Slices

 $P(d \mid s)$

Slices

 $P(d \mid s)$

What if I measure data value X and what to know what the range of true signals might be?

Slices

 $P(s \mid d)$

Confidence interval Observed signal = 9.88 ^{10⁻⁰} ^{10⁻⁰} ^{10⁻⁰} ^{10⁻⁰}

 9.88 ± 2.0

Matlab & upper limits

Examples of mistakes

Careful with priors

- Useful when adding information to previous results
- Usually want 'flat' or 'uninformative' priors

