Class 12: machine learning & the blob pt 1

Miguel F. Morales Bryna Hazelton

Final Presentation

- 20 min (5 min intro; 10 min analysis you are doing; 5 min questions)
- Quiz

No additional homework

- Work on final project
- Lots of office hours

Road ahead

Discussion of more advanced ideas

- Machine learning
- Parameters & inherited analyses
- Blind & semi-blind analyses
- Plots as a language
- Data rampages (killing trees for science)

Student presentations

Analysis blobs

The analysis blob

Machine Learning (blob pt 1)

Kinds of machine learning

A) Analysis without thinking (saves time!)

B) Teaching a machine to do repetitive work

C) ML assisted research

Repetitive work

Freeze dried undergrads!

- Take about 6 months to train
- Can then unthawed to do repetitive task
- Work in non-OSHA approved situations
- Don't graduate, Easily replicated

Problem characteristics

- Physics well understood
- You know the right answer
- With care you can figure out how to teach ML to recognize pattern (art of teaching)
- Throwback
- Very powerful for sifting vast amounts of information
- Enables you to concentrate on more advanced questions

ML assisted research

Iterative ML training as part of research loop

- Searching for increasingly rare events
- Untangling the physics

Inputs and ML

Catalog example

Iterative development

Errors

- Bayesian matching analysis
- Outliers examined by eye using diagnostic plots
- Patterns in errors identified

(a) Example of visualized position (top) and SED (bottom) information for a complicated match before (left) and after (right) manual modification. Ellipses indicate the reported major/minor axis and position angle.

(b) Example postage stamp images inspected for complicated matches. The white dash/dotted circles correspond to the search radius and resolution+error as indicated in (a)

Figure 4.2: The 2D distributions of all 9 input features. The color is log-scaled to highlight structure.

Iterative development

ML assisted analysis

- Increasingly rare events
- Develop sophisticated non-linear weighting
- Untangle the key physics (parameters encode science)

Significance

• Throw many signal-free events (data or MC), plot the output.

