
2 Hello, World
Chapter 2
Hello, World

© Massachusetts Institute of TechnologyAll Rights Reserved

To understand what computers don’t do, we need to start by understanding
what computers do well and how they work. To do this, we’ll write a simple
computer program. Every time a programmer learns a new language, she
does the same thing first: she writes a “Hello, world” program. If you study
programming at coding boot camp or at Stanford or at community college
or online, you’ll likely be asked to write one. “Hello, world” is a reference
to the first program in the iconic 1978 book The C Programming Language
by Brian Kernighan and Dennis Ritchie, in which the reader learns how
to create a program (using the C programming language) to print “Hello,
world.” Kernighan and Ritchie worked at Bell Labs, the think tank that is
to modern computer science what Hershey is to chocolate. (AT&T Bell Labs
was also kind enough to employ me for several years.) A huge number of
innovations originated there, including the laser and the microwave and
Unix (which Ritchie also helped develop, in addition to the C program-
ming language). C got its name because it is the language that the Bell Labs
crew invented after they wrote a language called “B.” C++, a still-popular
language, and its cousin C# are both descendants of C.

Because I like traditions, we’ll start with “Hello, world.” Please get a piece
of paper and a writing utensil. Write “Hello, world” on the paper.

Congratulations! That was easy.
Behind the scenes, it was more complex. You formed an intention, gath-

ered the necessary tools to carry out your intention, sent a message to your
hand to form the letters, and used your other hand or some other parts
of your body to steady the page while you wrote so that the physics of
the situation worked. You instructed your body to follow a set of steps to
achieve a specific goal.

Now, you need to get a computer to do the same thing.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

14 Chapter 2

Open your word-processing program—Microsoft Word or Notes or Pages
or OpenOffice or whatever—and create a new document. In that docu-
ment, type “Hello, world.” Print it out if you like.

Congratulations again! You used a different tool to carry out the same
task: intention, physics, and so on. You’re on a roll.

The next challenge is to make the computer print “Hello, world” in a
slightly different way. We’re going to write a program that prints “Hello,
world” to the screen. We’re going to use a programming language called
Python that comes installed on all Macs. (If you’re not using a Mac, the pro-
cess is slightly different; you’ll need to check online for instructions.) On a
Mac, open the Applications folder and then open the Utilities folder inside
it. Inside Utilities, there’s a program called Terminal (see figure 2.1). Open it.

Congratulations! You’ve just leveled up your computer skills. You’re now
close to the metal.

The metal means the computer hardware, the chips and transistors and
wires and so on, that make up the physical substance of a computer. When

Figure 2.1
Terminal program in the Utilities folder.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 15

you open the terminal program, you’re giving yourself a window through
the nicely designed graphical user interface (GUI) so that you can get closer
to the metal. We’re going to use the terminal to write a program in Python
that will print “Hello, world” on the computer screen.

The terminal has a blinking cursor. This marks what’s called the command
line. The computer will interpret, quite literally and without any nuance,
everything that you type in at the command line. In general, when you
press Return/Enter, the computer will try to execute everything you just
typed in. Now, try typing in the following:

python

You’ll see something that looks like this:

Python 3.5.0 (default, Sep 22 2015, 12:32:59)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.72)] on
darwin
Type "help," "copyright," "credits" or "license" for more
information.
>>>

The triple-carat marks (>>>) tell you that you’re in the Python interpreter,
not the regular command-line interpreter. The regular command line uses
a kind of programming language called a shell programming language. The
Python interpreter uses the Python programming language instead. Just as
there are different dialects in spoken language, so too are there many dia-
lects of programming languages.

Type in the following and press Return/Enter:

print("Hello, world!")

Congratulations! You just wrote a computer program! How does it feel?
We just did the same thing three different ways. One was probably more

pleasant than the others. One was probably faster and easier than the oth-
ers. The decision about which one was easier and which one felt faster has
to do with your individual experience. Here’s the radical thing: one was not
better than the other. Saying that it’s better to do things with technology is
just like saying it’s better to write “Hello, world” in Python versus scrawling
it on a piece of paper. There’s no innate value to one versus the other; it’s
about how the individual experiences it and what the real-world conse-
quences are. With “Hello, world,” the stakes are very low.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

16 Chapter 2

Most programs are more complex than “Hello, world,” but if you under-
stand a simple program, you can scale up your understanding to more com-
plex programs. Every program, from the most complex scientific computing
to the latest social network, is made by people. All those people started
programming by making “Hello, world.” The way they build sophisticated
programs is by starting with a simple building block (like “Hello, world”)
and incrementally adding to it to make the program more complex. Com-
puter programs are not magical; they are made.

Let’s say that I want to write a program that prints “Hello, world” ten
times. I could repeat the same line many times:

print("Hello, world!")
print("Hello, world!")

Ugh. Nope, not going to do that. I’m already bored. Pressing Ctrl+P to
paste eight more times would require far too many keystrokes. (To think
like a computer programmer, it helps to be lazy.) Many programmers think
typing is boring and tedious, so they try to do as little of it as possible.
Instead of retyping, or copying and pasting, the line, I’m going to write a
loop to instruct the computer to repeat the instruction ten times.

x=1
while x<=10:

print("Hello, world!\n")
x+=1

That’s way more fun! Now the computer will do all the work for me!
Wait—what just happened?

I set the value of x to 1 and created a WHILE loop that will run until it
reaches the stop condition, x>10. On the first time through the loop, x=1.
The program prints “Hello, world!” followed by a carriage return, or end
of line character, which is indicated by \n (pronounced backslash-n). A
backslash is a special character in Python. The Python interpreter is pro-
grammed to “know” that when it reads that special character, it should do
something special with the text that happens immediately afterward. In
this case, I am telling the computer to print a carriage return. It would be
a pain to start from scratch every time and program each dumb hunk of
metal to perform the same underlying functions, like read text and convert
it to binary, or to carry out certain tasks according to the conventions of
the syntax of our chosen programming language. Nothing would ever get

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 17

done! Therefore, all computers come with some built-in functions and with
the ability to add functions. I use the term know because it’s convenient, but
please remember that the computer doesn’t “know” the way that a sentient
being “knows.” There is no consciousness inside a computer; there’s only
a collection of functions running silently, simultaneously, and beautifully.

In the next line, x+=1, I am incrementing x by one. I think this stylis-
tic convention is particularly elegant. In programming, you used to have
to write x=x+1 every time you wanted to increment a variable to make it
through the next round of a loop. The Python stylists thought this was bor-
ing, and they wrote a shortcut. Writing x+=1 is the same as writing x=x+1.
The shortcut is taken from C, where a variable can be incremented with the
notation x++ or ++x. There are similar shortcuts in almost every program-
ming language because programmers do a lot of incrementing by one.

After one increment, x=2, and the computer hits the bottom of the
loop. The indentation of the lines under the while statement mean that
these lines are part of the loop. When it reaches the end of the loop, the
computer goes back to the top of the loop—the while line—and evaluates
the condition again: is x<=10? Yes. Therefore, the computer goes through
the instructions again and prints “Hello, world!\n” which appears on the
screen like this:

Hello, world!

Then, it increments x again. Now, x=3. The computer returns to the top
of the loop again, and again—until x=11. When x=11, the stop condition is
met, so the loop ends. Here’s another way of thinking about it:

IF: x<=10
THEN: DO_THE_INSTRUCTIONS_INSIDE_THE_LOOP
ELSE: PROCEED_TO_THE_NEXT_STEP.

Each routine (or subroutine) is a small step. If you assemble a lot of small
steps together, you can do very big things. Computer programmers get very
good at looking at a task, breaking the task down into small parts, and pro-
gramming the computer to take care of each of the small parts. Then, you
put the parts together and tinker with them a bit to make them work with
each other, and soon you have a working computer program. Today’s pro-
grams are modular, meaning that one programmer can build the first mod-
ule, another programmer can build the second module, and both modules
will be able to work together if they’re hooked up the right way.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

18 Chapter 2

Now that we’ve written a program, let’s talk about data. Data can be the
input or the output of a program. We generate data, meaning information
points or units of information, about the world in a variety of ways. The
National Weather Service gathers data on the high and low temperatures in
thousands of American locales each day. A pedometer can track the num-
ber of steps you take in a day, yielding a pattern of steps taken in a day, a
week, or a year. A kindergarten teacher I know has his students tally up the
number of pockets in his classroom on Mondays. Data can show us the
number of people who bought a particular hat; it can show us how many
endangered white rhinos are left in the wild; it can show us the rate at
which the polar ice caps are melting. Data is fascinating. It gives us insights.
It allows us to learn about the world and to grapple with concepts that are
beyond our current understanding. (Although if you’re old enough to read
this book, hopefully you’ve already come to grips with the idea of other
people’s pockets.)

Although the data may be generated in different ways, there’s one thing
all the preceding examples have in common: all of the data is generated
by people. This is true of all data. Ultimately, data always comes down to
people counting things. If we don’t think too hard about it, we might imag-
ine that data springs into the world fully formed from the head of Zeus.
We assume that because there is data, the data must be true. Note the first
principle of this book: data is socially constructed. Please let go of any notion
that data is made by anything except people.

“What about computer data?” a savvy kindergarten pocket-data collec-
tor might ask. That’s a very good question. Data generated by computers
is ultimately socially constructed because people make computers. Math is
a system of symbols entirely created by people. Computers are machines
that compute: they perform millions of mathematical calculations. Com-
puters are not built according to any kind of absolute universal or natural
principles; they are machines that result from millions of small, inten-
tional design decisions made by people who work in specific organizational
contexts. Our understanding of data, and the computers that generate and
process data, must be informed by an understanding of the social and tech-
nical context that allows people to make the computers that make the data.

One way to understand what comes out of computers is to understand
what goes into computers. There are certain physical realities to the com-
puter. Most computers are protected by a hard case, and inside the case is a

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 19

bunch of circuit boards and stuff. Let me be more specific about this stuff.
The important parts are the power source, the connection to the screen,
the transistors, the built-in memory, and the writeable memory. All these
things fall under the category of hardware. Hardware is physical; software is
anything that runs on top of the hardware.

I first learned about the physical reality of a computer in high school in
the 1990s. I was in a special engineering program for kids that was spon-
sored by Lockheed Martin. There was a Lockheed plant in my small New
Jersey town. The building was shaped like a battleship and was surrounded
by miles of unused farmland. The rumor back then was that the plant
manufactured nuclear weapons, and that under the amber waves of grain
were missile silos that would rise and shoot nuclear missiles in the case of
attack by the Soviet Union. This was just before the end of the Cold War
era, and everyone had seen the terrifying TV movie The Day After about the
aftermath of a nuclear apocalypse, so we regularly had conversations about
where the US missiles were, where the Soviets’ missiles would land, and
what we would do afterward. A few times a month, I took a school bus to
the Lockheed plant to meet up with a handful of other teenagers from local
schools and learn about engineering.

People sometimes say that a computer is like a brain. It isn’t. If you take
a piece out of a brain, the brain will reroute pathways to compensate. Think
about the traumatic brain injury suffered by Arizona Congresswoman
Gabby Giffords in 2011. Giffords was holding a meeting with constituents
in the parking lot of a Safeway grocery store when a lone gunman, Jared Lee
Loughner, shot her in the head at point-blank range. Loughner next shot
blindly around the parking lot, killing six people and wounding eighteen.
He had been stalking Giffords.

Giffords’s intern, Daniel Hernandez Jr., held her upright and applied
pressure to the wound while bullets flew through the parking lot. Even-
tually, bystanders subdued Loughner and police and emergency services
arrived. Giffords was in critical condition. Doctors performed emergency
brain surgery and then put her into a medically induced coma to allow
her brain to heal. Four days after the attack, Giffords opened her eyes. She
couldn’t speak, she could barely see—but she was alive.

Giffords courageously faced the long road to recovery. With intensive
therapy, she relearned how to speak. Like most people who suffer this
kind of traumatic brain injury, Giffords’s voice was very different than it

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

20 Chapter 2

was before the attack. Her new voice was slower, and her speech sounded
labored. Speaking left her tired. Her brain created new pathways that were
different than the old, missing pathways. This is one of the amazing things
that a brain can do: it can, under very specific conditions and in very spe-
cific ways, repair itself.

A computer can’t do this. If you take a piece out of a computer, it simply
won’t work. Everything stored in computer memory has a physical address.
The working draft of this book is stored in a particular spot on my comput-
er’s hard drive. If that spot was erased, I would lose all these carefully crafted
pages. It would be bad; I might have a small breakdown and miss my dead-
line. However, the ideas would still exist in my brain, so I could recreate the
text if necessary. A brain is more flexible and adaptable than a hard drive.

This was one of the many useful things I learned at Lockheed. I also dis-
covered that at tech companies, there are always plenty of slightly outdated
spare parts lying around because people upgrade their computers or leave
the company. Each teenager in the program was given a case for an Apple II
computer, a circuit board, some memory chips, some brightly colored ribbon
cables, and miscellaneous other parts scavenged from various offices in the
(possibly nuclear) plant. We plugged these components in, and our teacher
explained what each part did. The cases were dirty and the keyboards were
slightly sticky and all the circuit boards were dusty, but we didn’t care. We
were building our own computers, and it was fun. After we built our com-
puters, we learned to program them using a simple programming language
called BASIC. At the end of the semester, we got to keep the computers.

I tell this story because it’s important to think of a computer as an object
that can be and is constructed by human hands. Often, the students who
show up in my programming for journalists classes are intimidated by tech-
nology. They worry that they are going to break the computer or make
some kind of catastrophic misstep. “The only way you can break the com-
puter is with a hammer,” I tell them. They rarely believe me at first. By the
end of the semester, they are more confident. Even if they break something,
they have faith that they can fix it or figure it out. This confidence is key in
technological literacy.

You are not in my classroom, so I can’t hand you a computer, but I
encourage you to take apart an old one. You may have one lying around;
otherwise, old computers are often available at thrift stores for not very
much money. You might ask around at an office; usually, the system

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 21

administrator or web person will have some old technology lying around
as decoration, or because they haven’t gotten around to recycling it yet. A
desktop computer is the easiest to use for this activity.

Take the computer apart. You’ll probably need a very small screwdriver
if you are dismantling a laptop. The interior of the desktop computer prob-
ably looks something like the image in figure 2.2.

Look at the parts, how they are put together. Follow the wires from the
inputs (USB port, video port, speaker port, etc.) and see where they connect.
Touch the rectangular blobs that seem cemented on the circuit board. Find
the microprocessor chips: these are the pieces that probably say “Intel” and
are the key to this whole endeavor. They are important. Find the plug that
connects the computer hardware to the monitor. It’s probably connected
to an extremely strong, flexible, plasticky ribbon. This carries information
about graphics to the screen, then the screen displays the graphics specified
in the code.

When you wrote your Python program, you typed on the keyboard. That
information was carried into the computer body from the keyboard, then
was interpreted character by character. Then, the computer sent out an
instruction from the body to another part of the machine—the monitor—
telling it to print the text “Hello, world.” This cycle happens over and over
again, with simple or complex instructions.

Figure 2.2
The innards of a desktop computer.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

22 Chapter 2

Dismantling a computer is a great activity to do with a kid. I once took
apart a laptop with my son when he was in elementary school. I wanted to
recycle a couple of laptops, and I was pulling out the hard drives to smash
them with a hammer before dropping them at the recycler. (I discovered
at some point that smashing a hard drive is easier, and often more satisfy-
ing, than erasing it.) I asked my son if he wanted to help me take the hard
drive out of the computer. “Are you kidding? I want to take the whole thing
apart,” he said. So, we spent an enjoyable hour or two disassembling the
two laptops on the kitchen counter.

In my university class, we play with hardware and then move on to talk-
ing about software—including “Hello, world.” Software is everything that
runs on top of the hardware. It’s what allows you to write an instruction on
the keyboard and have the machine act on the instruction. It’s what allows
the “Hello, world” program to run. Behind the scenes, the text you write
is being compiled into instructions that the machine can follow. Hardware
is physical; software is everything else. Computer programming and writing
software usually are the same thing.

I’m not going to lie: programming is math. If anyone tries to convince
you that it isn’t, or that you can really learn programming without doing
math, they’re probably trying to sell you something.

The good news is, the math that you need for introductory program-
ming is the math you learn around fourth or fifth grade. You’ll need to
have mastered addition, subtraction, multiplication, division, fractions,
percentages, and remainders. You’ll need basic geometry like area, perim-
eter, radius, circumference. You’ll need to know basic graphing terms like x,
y, and z axes. Finally, you’ll need to know the basics of functions—that to
turn 2 into 22, we perform a mathematical function on it.

If you have a major math phobia, you probably want to stop read-
ing now. That’s OK! There’s a lot of rhetoric out there that suggests
everyone should learn to code. I don’t agree with this. If you really can’t
do math, coding will probably make you miserable. However, if you’re con-
fident that you can calculate the tip at a restaurant, and you can do every-
day things like estimate how big a rug to get for your living room, you’ll
be fine.

To get beyond introductory programming to intermediate programming
requires knowing linear algebra, some geometry, and some calculus. How-
ever, many people do just fine in their careers with “only” introductory

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 23

programming skills. Programming can be both an art and a craft. For pro-
gramming as a craft, you can apprentice and learn and earn a decent living.
Programming as an art requires craftsmanship plus training in advanced
mathematics. This book assumes you’re primarily interested in craft.

There are technical ways to describe how software and hardware work
together. For the moment, I’m going to use a metaphor instead. Under-
standing the layers of a computer is like understanding the layers of a tur-
key club sandwich (figure 2.3).

The turkey club is a familiar sight. It has lots of different parts, but they
all work well together and result in a delicious sandwich. Just like you build
a turkey club in a specific order to achieve a certain effect, a computer runs
in a specific order.

Building a turkey club starts with the base layer of bread. That’s like
the hardware in a computer. The hardware doesn’t “know” anything—it
just knows how to deal with binary data, 0s and 1s. By deal with, I mean

Figure 2.3
A turkey club sandwich.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

24 Chapter 2

calculate. Remember that everything a computer can do comes down to
math.

On top of the hardware is a layer that allows you to translate words into
binary (0s and 1s). Let’s call this the machine-language layer. It’s like the layer
of turkey that comes next in the club sandwich. Machine language trans-
lates symbols into binary so that the computer can perform calculations.
Those symbols are the words and numbers that we humans use to com-
municate meaning to each other. It’s a constructed system. The dialect you
use to “speak” machine language is called assembly language. It assembles
symbols into machine code.

Assembly language is difficult. Here’s a sample of an assembly language
program to write “Hello, world” ten times, which I copied from a post on a
developers’ site called Stack Overflow:

org
xor ax, ax
mov ds, ax
mov si, msg

boot_loop:lodsb
or al, al
jz go_flag
mov ah, 0x0E
int 0x10
jmp boot_loop

go_flag:
jmp go_flag

msg db 'hello world', 13, 10, 0
times 510-($-$$) db 0
db 0x55
db 0xAA

Assembly language is not easy to read or write. Very few people want
to spend their days in this language. To make it easier for humans to com-
municate instructions, we put something on top of the machine-language
layer. This is called an operating system. On my Mac, the operating system
is Linux, which is named after its creator, Linus Torvalds. Linux is based
on Unix, the operating system developed by Ritchie of “Hello, world”
fame. You probably know operating systems well, even if you don’t know
what they’re called. Part of the personal computer revolution of the 1980s
was the triumph of operating systems, which run on top of the machine-
language layer and are far easier to interact with if you’re a human.

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 25

At this point, you have a perfectly serviceable (if plain) computer. You
can run all kinds of exciting, interesting programs just using Linux. How-
ever, Linux is primarily text-based, and it’s not intuitive—so, on the Mac,
there’s another operating system, OSX, the recognizable Mac interface. It’s
called a graphical user interface (GUI). The GUI was one of Steve Jobs’s great
innovations: he realized that using the text-based interface was difficult, so
he popularized the practice of putting pictures (icons) on top of the text
and using the mouse as a way of navigating among the pictures. Jobs got
the idea of the desktop GUI and the mouse from Alan Kay’s team at Xerox
PARC, another research lab, which released a computer with a GUI and
mouse in 1973. Although we like to credit individuals for technological
innovations, rarely is it the case that a lone inventor created any modern
computational innovations. When you look closely, there’s always a logi-
cal predecessor and a team of people who worked on the idea for months
or years. Jobs paid for a tour of Xerox PARC, saw the idea of a GUI, and
licensed it. The Xerox PARC mouse-and-GUI computer was a derivative of
an earlier idea, the oN-Line System (NLS), demonstrated by Doug Engel-
bart in the “mother of all demos” at the 1968 Association for Computing
Machinery conference. We’ll look at this intricate history in chapter 6.

The next layer to think about is another software layer: a program that
runs on top of an operating system. A web browser (like Safari or Firefox
or Chrome or Internet Explorer) is a program that allows you to view web
pages. Microsoft Word is a word processing program. Desktop video games
like Minecraft are also programs. These programs are all designed to take
advantage of certain underlying features of the different operating systems.
That’s why you can’t just run a Windows program on a Mac (unless you
use another software program—an emulator—to help you). These programs
are designed to seem very easy to use, but underneath they’re highly
precise.

Let’s add some complexity. Imagine that you’re a journalist who writes a
weekly online column about cats. You use a software program to compose
your column. Most journalists compose in a word processing program like
Microsoft Word or Google Docs. Either of these programs can run either
locally or in the cloud. Locally means that the program is running on
the hardware on your computer. In the cloud means that the program is run-
ning on someone else’s computer. The cloud is a wonderful metaphor, but
practically speaking, the cloud just means “a different computer, probably

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

26 Chapter 2

located with thousands of other computers in a large warehouse in the
tristate area.” The content you create is the truly unique part that comes
from your imagination: your elegant, pithy, lovingly crafted story about
cats riding Roomba vacuum cleaners or whatever. To the computer, every
story is the same, just a collection of 0s and 1s stored on a hard drive
somewhere.

After you compose your story, you put it into a content-management
system (CMS) so that it can be seen by your editor and eventually by your
audience. A CMS is an essential piece of software for the modern media
organization. Media organizations handle hundreds of stories each day,
every day. Each story is due at a different time of day; each story is in a dif-
ferent state of editing (or disarray) at any given time; each story has a dif-
ferent headline for print and for online; each story has a different excerpt
to be used on each social media platform; each story has images or video
or data visualizations or code associated with it; each story is created by a
person who needs to be complimented or paid or managed; and all this
goes on 24 hours a day, 365 days a year. The scale is vast. I can’t stress this
enough. It would be foolish to try to manage this type of endeavor without
software. The CMS is a tool for managing all the stories and images and so
forth that the media organization publishes in print or online.

The CMS also allows the media organization to apply a uniform design
template to each story so that the stories all look similar. This is good for
branding, but it’s also practical. If every single story had to be individually
designed for digital presentation, it would take forever to publish anything.
Instead, the CMS imposes a standardized design template on top of the raw
text that you, the reporter, type into the CMS.

Consider the process of deciding what parts of the design template you
will use in your story to decorate it. Will you use pull quotes? Will you
include hyperlinks? Will you embed social media posts by people you quote
in the story? These are all small design decisions that will affect the reader’s
experience of your story.

Finally, the story needs to go out into the world. A web server, another
piece of software, is used to take the story from the CMS to a person who
wants to read the story. The reader accesses the story via a web browser like
Chrome or Safari. The web browser is called a client. The web server serves
the story (which the CMS converts to an HTML page) to the client. The
client-server model, the endless sending and receiving of information, is

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 27

how the web works. The terms client and server come from restaurants. One
way to understand the client-server model is to think about a human server
at a restaurant, who distributes food to human clients of the restaurant.

This is the underlying process (more or less) every time you access some-
thing on the web. There are many steps and thus many opportunities for
things to go wrong. Really, it’s quite impressive that things don’t go wrong
more often.

Every time you use a computer, you are using this complex set of layers.
There is no magic to it, although the results can seem amazing. Under-
standing the technical realities is important because it allows you to antici-
pate how, why, and where things will go wrong in a computerized scenario.
Even if you feel like the computer is talking to you, or you feel like you are
having an interaction with a computer, what you are really doing is having
an interaction with a program written by a human being with thoughts,
feelings, biases, and background.

This often works out beautifully. It is straight-up fun to interact with
Eliza, the 1966 text interaction bot that responds to questions in the
manner of a Rogerian psychotherapist. To this day, there are bots on Twit-
ter that respond to users with the patterns pioneered by the Eliza software.
A simple Internet search will turn up many examples of Eliza code.1 Eliza’s
canned responses are based on the user’s input. The replies include the
following:

Don’t you believe that I can _____?
Perhaps you would like to be able to _____.
You want me to be able to _____.
Perhaps you don’t want to _____.
Tell me more about such feelings.
What answer would please you the most?
What do you think?
What is it you really want to know?
Why can’t you _____?
Don’t you know?

Try to build an Eliza bot, and the limitations of the form quickly become
apparent. Can you build a set of responses that work in any situation? No
way. You can think of responses that would suit most situations, but not
all. There will always be limitations to what a computer can say in response
to a human, because there will always be limits to the imagination of the
human computer programmer. Even crowdsourcing will not be adequate,

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

28 Chapter 2

because there will never be enough people to predict every situation that
has ever arisen or will ever arise in the future. The world changes; so do con-
versational styles. Even Rogerian therapy is no longer considered the latest
and greatest interaction style; cognitive behavioral therapy is far more in
vogue right now.

Trying to predict every possible response for a bot is doomed in part
because we can’t get away from unforeseen events. I’m reminded of the
time that I found out a friend committed suicide by jumping in front of a
New York City subway train. I didn’t know this was coming, and I didn’t
know what to do once I heard. For a while, everything seemed to stop.

Eventually, the shock passed and I began to mourn. But until it hap-
pened, I didn’t have any way to predict that this particular tragedy would
be something that I’d have to assimilate. We’re all the same in this regard.
Programmers are no better than anyone else at anticipating unexpected,
terrible situations. Social groups tend to have a collective blind spot when
it comes to imagining the worst. It’s a kind of cognitive bias that sociolo-
gist Karen A. Cerulo calls “positive asymmetry” in her book Never Saw It
Coming: Cultural Challenges to Envisioning the Worst. Positive asymmetry is
a “tendency to emphasize only the best or most positive cases,” she writes.
Cultures tend to reward those who focus on the positive and shun or pun-
ish those who bring up the downside. The programmer who brings up the
potential new audience for a product gets more attention than the pro-
grammer who points out that the new product will likely be used for harass-
ment or fraud.2

Eliza’s responses reflect its designer’s basically playful outlook. Looking
at Eliza’s responses, it’s easy to see how voice assistants like Apple’s Siri are
programmed. The original Eliza had a few dozen responses; Siri includes
many, many responses crafted by many, many people. Siri can do a lot:
it can send messages, place phone calls, update a calendar with appoint-
ments, or set an alarm. It can be fun to stump Siri. Little kids take especial
delight in testing the outer limits of what Siri will say. However, Siri and
the other voice assistants are limited in their verbal responses by the collec-
tive imagination (and positive asymmetry) of their programmers. A team
at the Stanford School of Medicine tested the various voice assistants to see
whether the assistants recognized a health crisis, responded with respectful
language, and referred the person to an appropriate resource. The programs

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

Hello, World 29

responded “inconsistently and incompletely,” the authors wrote in JAMA
Internal Medicine in 2016. “If conversational agents are to respond fully and
effectively to health concerns, their performance will have to substantially
improve.”3

Technochauvinists like to believe that computers do a better job than
people at most tasks. Because the computer operates based on mathemati-
cal logic, they think that this logic translates well to the offline world. They
are right about one thing: when it comes to calculating, computers do a far
better job than people alone. Anyone who has ever graded a student math
paper will happily admit that. But there are limits to what a computer can
do in certain situations.

Consider the tacocopter, a fanciful idea that had a moment of online
popularity. It sounds delightful: a quadcopter drone that delivers a hot,
tasty bag full of tacos right to your door! However, when you think about
the hardware and software, the flaws in the idea become apparent. A drone
is basically a remote-controlled helicopter with a computer and a camera.
What happens when it rains? Electrical things don’t do well in rain, snow,
or fog. My cable television service always malfunctions in a rainstorm, and
a wireless drone is far more fragile. Is the tacocopter supposed to come to
the window? The front door? How will it push the button in the elevator,
or open a stairway door, or push an intercom bell? These are all mundane
tasks that are easy for humans, but insanely difficult for computers. How
might a tacocopter be co-opted to deliver other, less nutritious and legal
substances? What would happen when it inevitably gets shot out of the sky
by a freaked-out homeowner with a gun? Only a technochauvinist would
imagine that a tacocopter is better than the human-based system that we
have now.

If you ask Siri if tacocopters are a good idea, she will look up that phrase
for you online. What you’ll get are a bunch of news articles about the taco-
copter, including one from Wired magazine (more on that publication and
one of its founders, Stewart Brand, in chapter 6) that debunks the con-
cept more fully than I have done here. The founder admits it’s logistically
impossible, not least because of FAA regulations on the commercial use of
unmanned aerial vehicles. But, she claims, keeping the vision of the idea
alive is still important. “Like what cyberpunk did for the internet,” she says.
“Mull the possibilities, give people things to think about.”4

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

30 Chapter 2

What seems to be missing here is a more complete vision of what a world
with functioning tacocopters would be like. What would it mean to design
buildings and urban environments to enable drones instead of humans?
How would our access to light and air change if windows became docking
stations for food-delivery vehicles? What might be the social costs of eradi-
cating even that most mundane and insignificant of interactions—a bag of
food being passed from one human hand to another? Do we really want to
say “Hello, world” to that reality?

Downloaded from http://direct.mit.edu/books/chapter-pdf/222710/9780262346733_cac.pdf
by University of Washington user
on 20 July 2020

