
7 Machine Learning: The DL on ML
Chapter 7
Machine Learning

© Massachusetts Institute of TechnologyAll Rights Reserved

In order to create a more just technological world, we need more diverse
voices at the table when we create technology. To do this, we need to employ
conventional solutions like reducing barriers to entry and addressing the
“leaky pipeline” issues that make mid-career professionals drop out or stall
on their way to the top. I think we also need to add an unconventional
solution: we need to add nuance to the way we talk about all things digital.
This is easier said than done. One illustration of the difficulty of talking
about computer science comes from an xkcd comic by Randall Munro. In it,
a woman sits at a computer and a man stands behind her:

“When a user takes a photo, the app should check whether they’re in a
national park,” says the man.

“Sure, easy GIS lookup,” says the woman. “Gimme a few hours.”
“And check whether the photo is a bird,” says the man.
“I’ll need a research team and five years,” says the woman.
“In CS, it can be hard to explain the difference between the easy and the

virtually impossible,” reads the caption.1

Because it’s complicated to explain why a computer might have trou-
ble recognizing a bird in an image, or differentiating between a parrot and
guacamole, we need more people (data journalists, perhaps?) explaining
complex technical topics in plain language to demystify the more arcane
corners of the AI world.

The difficulty of talking about computation has led to a lot of misun-
derstandings. One recurrent idea in this book is that computers are good at
some things and very bad at others, and social problems arise from situa-
tions in which people misjudge how suitable a computer is for performing
the task. The classic example of a thing that is very simple for people but
very complex for computers is navigating a room with toys all over the

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

88 Chapter 7

floor. The average toddler can navigate a room without stepping on toys
(though of course she might not choose to do so). A robot can’t. To get the
robot to navigate the toy-strewn floor, we would have to program in all of
the information about the toys and their exact dimensions and have the
robot calculate a path around the toys. If the toys moved, the robot would
need its schema updated. Self-driving cars, which we’ll discuss in chapter 8,
work like this hypothetical robot in the playroom: they constantly update
their preprogrammed map of the world.

There are also predictable pitfalls to the robot method, as people who
own both Roomba robotic vacuum cleaners and pets have discovered.
When a pet leaves something disgusting on the floor, the Roomba will
smear it all over the house. “Quite honestly, we see this a lot,” a spokesman
from iRobot, the company that makes the Roomba, said to the Guardian in
August 2016. “We generally tell people to try not to schedule your vacuum
if you know you have dogs that may create such a mess. With animals any-
thing can happen.”2

I can use a euphemism to talk about the disgusting things that pets do
because everyday language allows us to refer to things without using precise
words. If I say that my dog is adorable, but also gross, you will understand.
You can hold the two competing ideas in your head at the same time, and
you can guess what I mean by gross. There are no such euphemisms in
mathematical language. In mathematical language, everything is highly
precise. Part of the communication problem that exists in computational
culture derives from the imprecision of everyday language and the preci-
sion of mathematical language. One example: in programming, there is a
concept called a variable. You assign a value to a variable by writing some-
thing like “X = 2,” and then you can use X in a routine. There are two kinds
of variables: variables that change, which are called variables, and variables
that don’t change, which are called constants. This makes perfect sense to
a programmer: a variable can be a constant. To a nonprogrammer, it likely
doesn’t make sense: constant is the opposite of varying, so a thing that var-
ies is not a thing that is unvarying. It’s confusing.

This naming problem is not new. Language has always evolved along
with science. In biology, cells got their name because the man who dis-
covered them in 1665, Robert Hooke, was reminded of the walls of monks’
cells in monasteries. The naming problem is particularly acute right now,
however, because of the rapid pace of technological change. We’re adopting

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 89

new computational concepts and new hardware at a breathtaking rate, and
people are inventing names for new things based on concepts or artifacts
that already exist.

Although computer scientists and mathematicians tend to be talented
at computer science and math, as a group they tend not to be sensitive
to the nuances of language. If something needs a name, they don’t obsess
over picking the perfect name that has ideal connotations and Latin roots
and what have you. They just pick a name, usually one that has to do with
something they like. Python the programming language is named after
Monty Python the comedy troupe (Monty Python is the ur-comedy text
in computer science, like Star Wars is the ur-narrative text.) Django, a web
framework, is named after Django Reinhardt the jazz guitarist, a favorite of
the Django framework’s inventor. Java the language is named after coffee.
JavaScript, an unrelated language, was invented around the same time as
Java and is also (unfortunately) named after coffee.

As the term machine learning has spread from computer science circles
into the mainstream, a number of issues have arisen from linguistic confu-
sion. Machine learning (ML) implies that the computer has agency and is
somehow sentient because it “learns,” and learning is a term usually applied
to sentient beings like people (or partially sentient beings like animals).
However, computer scientists know that machine “learning” is more akin
to a metaphor in this case: it means that the machine can improve at its
programmed, routine, automated tasks. It doesn’t mean that the machine
acquires knowledge or wisdom or agency, despite what the term learning
might imply. This type of linguistic confusion is at the root of many mis-
conceptions about computers.3

Imagination also complicates things. How you define AI depends on
what you want to believe about the future. One of Marvin Minsky’s stu-
dents, Ray Kurzweil, is a proponent of the singularity theory, a hypothetical
future merging of man and machine that he thinks will be achieved by
2045. (Kurzweil is famous for inventing a musical synthesizer that sounds
like a grand piano.) Singularity is a major preoccupation of science fiction.
I was once interviewed for a futurists’ summit, and the interviewer asked
me about the paperclip theory: What if you invented a machine that made
paperclips, and then you taught the machine to want to make paperclips,
and then you taught the machine to want to make other things, and then
the machine made lots of other machines and all the machines took over?

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

90 Chapter 7

“Is that the singularity?” the interviewer asked. “And aren’t you worried
about it?” That’s fun to think about, but it’s also not reasonable. You can
unplug the paperclip machine. Problem solved. Also, this is a purely hypo-
thetical situation. It’s not real.

As psychologist Stephen Pinker told IEEE Spectrum, the magazine of the
Institute of Electrical and Electronics Engineers (IEEE), in a special issue on
the singularity: “There is not the slightest reason to believe in a coming
singularity. The fact that you can visualize a future in your imagination is
not evidence that it is likely or even possible. Look at domed cities, jet-pack
commuting, underwater cities, mile-high buildings, and nuclear-powered
automobiles—all staples of futuristic fantasies when I was a child that have
never arrived. Sheer processing power is not a pixie dust that magically
solves all your problems.”4

Facebook’s Yann LeCun is also a singularity skeptic. He told IEEE Spec-
trum: “There are people that you’d expect to hype the Singularity, like Ray
Kurzweil. He’s a futurist. He likes to have this positivist view of the future.
He sells a lot of books this way. But he has not contributed anything to the
science of AI, as far as I can tell. He’s sold products based on technology,
some of which were somewhat innovative, but nothing conceptually new.
And certainly he has never written papers that taught the world anything
on how to make progress in AI.”5 Reasonable, smart people disagree about
what will happen in the future—in part because nobody can see the future.

I’m going to try to bring some clarity to the situation by defining
machine learning and showing you an example of how someone might
perform machine learning on a dataset. I’m going to explain machine
learning a few different ways and also demonstrate some code. It’s going
to get technical. If the technical parts get confusing, don’t worry; you can
skim them first and return to them later.

AI enjoyed a popularity bump in 2017 in contrast to many years of what
people call an AI winter. In the mainstream, people mostly ignored AI for
the first decade of the 2000s. The Internet was the popular thing techno-
logically, then mobile devices, and those were the focus of our collective
imagination. In the middle of the 2010s, however, people started talking
about machine learning. Suddenly, AI was on fire again. AI startups were
founded and acquired. IBM’s Watson beat a human player at Jeopardy!; an
algorithm outfoxed a human player at playing Go. Even the words machine
learning were cool. A machine could learn! The promise was delivered!

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 91

At first, I wanted to believe that some genius had figured out the truly
hard problem of making a machine think—but when I looked closer, it
turned out that the reality was far more nuanced. What had happened was
that scientists had redefined the term machine learning so that it referred to
their work. They used the term so much that its meaning changed.

This happens. Language is fluid. A good example is the word literally,
which used to mean the opposite of figuratively. In the 1990s, if you said,
“My mouth was literally on fire after eating that ghost pepper,” it meant
that there were actual flames in your mouth and you were talking from the
other side of recovery from third-degree burns. However, in the 2000s, a
critical mass of people started using literally as a synonym for figuratively
and for emphasis. “I was ready to literally kill someone if I had to listen
to that John Mayer song one more time” became understood as “I would
really prefer not to listen to another John Mayer song,” rather than a state-
ment about murder or mayhem.

The term machine learning entered the lexicon in 1959, according to the
Oxford English Dictionary (OED). The OED began including machine learn-
ing as a phrase in its third edition, published in 2000. The OED defines
machine learning as follows:

machine learning n. Computing the capacity of a computer to learn from experi-
ence, i.e. to modify its processing on the basis of newly acquired information.

1959 IBM Jrnl. 3 211/1 We have at our command computers with adequate
data-handling ability and with sufficient computational speed to make use of
machine-learning techniques.

1990 New Scientist 8 Sept. 78/1 When Doug Lenat of Stanford developed
Eurisko, a second generation machine learning system, he thought that he had cre-
ated a real intellectual.6

This definition is true, but it doesn’t quite capture the way that contem-
porary computer scientists use the term. A more comprehensive definition
is found in Oxford’s A Dictionary of Computer Science:

machine learning

A branch of artificial intelligence concerned with the construction of programs that
learn from experience. Learning may take many forms, ranging from learning from
examples and learning by analogy to autonomous learning of concepts and learning
by discovery.

Incremental learning involves continuous improvement as new data arrives while
one-shot or batch learning distinguishes a training phase from the application phase.

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

92 Chapter 7

Supervised learning occurs when the training input has been explicitly labeled with
the classes to be learned.

Most learning methods aim to demonstrate generalization whereby the system
develops efficient and effective representations that encompass large chunks of
closely related data.7

This is closer, but still not quite right. The documentation for scikit-
learn, a popular software library for machine learning in Python, has a dif-
ferent definition: “Machine learning is about learning some properties of a
data set and applying them to new data. This is why a common practice in
machine learning to evaluate an algorithm is to split the data at hand into
two sets, one that we call the training set on which we learn data proper-
ties and one that we call the testing set on which we test these properties.”8

It’s rare that a term has so much disagreement across different sources.
The definition of a dog, for example, is pretty consistent across texts. How-
ever, machine learning is so new, and there is so little consensus, that it’s
not surprising that the linguistic definitions haven’t caught up to reality.

Tom M. Mitchell, the E. Fredkin University Professor in the Machine
Learning Department of Carnegie Mellon University’s School of Computer
Science, offers a good definition of machine learning in “The Discipline of
Machine Learning.” He writes: “We say that a machine learns with respect
to a particular task T, performance metric P, and type of experience E, if the
system reliably improves its performance P at task T, following experience
E. Depending on how we specify T, P, and E, the learning task might also
be called by names such as data mining, autonomous discovery, database
updating, programming by example, etc.”9 I think this is a good defini-
tion because Mitchell uses very precise language to define learning. When
a machine “learns,” it doesn’t mean that the machine has a brain made out
of metal. It means that the machine has become more accurate at perform-
ing a single, specific task according to a specific metric that a person has
defined.

This kind of learning does not imply intelligence. As programmer and
consultant George V. Neville-Neil writes in the Communications of the ACM:

We have had nearly 50 years of human/computer competition in the game of chess,
but does this mean that any of those computers are intelligent? No, it does not—for
two reasons. The first is that chess is not a test of intelligence; it is the test of a par-
ticular skill—the skill of playing chess. If I could beat a Grandmaster at chess and yet
not be able to hand you the salt at the table when asked, would I be intelligent? The
second reason is that thinking chess was a test of intelligence was based on a false

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 93

cultural premise that brilliant chess players were brilliant minds, more gifted than
those around them. Yes, many intelligent people excel at chess, but chess, or any
other single skill, does not denote intelligence.10

There are three general types of machine learning: supervised learning,
unsupervised learning, and reinforcement learning. Here are definitions
of each from a widely used textbook called Artificial Intelligence: A Modern
Approach by UC Berkeley professor Stuart Russell and Google’s director of
research, Peter Norvig:

Supervised learning: The computer is presented with example inputs and their de-
sired outputs, given by a “teacher,” and the goal is to learn a general rule that maps
inputs to outputs.

Unsupervised learning: No labels are given to the learning algorithm, leaving it
on its own to find structure in its input. Unsupervised learning can be a goal in itself
(discovering hidden patterns in data) or a means toward an end (feature learning).

Reinforcement learning: A computer program interacts with a dynamic environ-
ment in which it must perform a certain goal (such as driving a vehicle or playing a
game against an opponent). The program is provided feedback in terms of rewards
and punishments as it navigates its problem space.11

Supervised learning is the most straightforward. The machine is provided
with the training data and labeled outputs. We essentially tell the machine
what we want to find, then fine-tune the model until we get the machine
to predict what we know to be true.

All three kinds of machine learning depend on training data, known
datasets for practicing and tuning the machine-learning model. Let’s say
that my training data is a dataset of one hundred thousand credit card com-
pany customers. The dataset contains the data you would expect a credit
card company to have for a person: name, age, address, credit score, inter-
est rate, account balance, name(s) of any joint signers on the account, a list
of charges, and a record of payment amounts and dates. Let’s say that we
want the ML model to predict who is likely to pay their bill late. We want to
find these people because every time someone pays a bill late, the interest
rate on the account increases, which means the credit card company makes
more money on interest charges. The training data has a column that indi-
cates who in this group of one hundred thousand has paid their bills late.
We split the training data into two groups of fifty thousand names each: the
training set and the test data. Then, we run a machine-learning algorithm
against the training set to construct a model, a black box, that predicts what
we already know. We can then apply the model to the test data and see the

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

94 Chapter 7

model’s prediction for which customers are likely to pay late. Finally, we
compare the model’s prediction to what we know is true—the customers
in the test data who actually paid late. This gives us a score that measures
the model’s precision and recall. If we as model makers decide that the
model’s precision/recall score is high enough, we can deploy the model on
real customers.

A handful of different machine-learning algorithms are available to
apply to datasets. You may have come across some of the names, which
include random forest, decision tree, nearest neighbor, naive Bayes, or hid-
den Markov. An algorithm, remember, is a series of steps or procedures that
the computer is instructed to follow. In machine learning, the algorithm is
coupled with variables to create a mathematical model. A wonderful expla-
nation of models is found in Cathy O’Neil’s Weapons of Math Destruction.
O’Neil explains that we model things unconsciously all the time. When I
decide what to make for dinner, I make a model: what food is in my refrig-
erator, what dishes I could possibly make with that food, who the people
eating that night are (usually my husband and son and me), and what their
food preferences are. I evaluate the various dishes and recall how each per-
formed in the past—who took seconds of what, and what items are on the
ever-changing list of shunned foods: cashews, frozen vegetables, coconut,
organ meats. By deciding what to make based on what I have and what
people like, I’m optimizing my meal choices for a set of features. Building
a mathematical model means formalizing the features and the choices in
mathematical terms.12

Let’s say that I want to “do” machine learning. The first thing I do is grab
a dataset. A variety of interesting datasets are available for machine-learning
practice; they are collected in online repositories. There are datasets of facial
expressions, of pets, or of YouTube videos. There are datasets of emails sent
by people who worked at a failed company (Enron), datasets of newsgroup
conversations in the 1990s (Usenet), datasets of friendship networks from
failed social network companies (Friendster), datasets of movies that people
watched on streaming services (Netflix), datasets of people saying common
phrases in different accents, or datasets of people’s messy handwriting. These
datasets are collected from active corporations, from websites, from univer-
sity researchers, from volunteers, and from defunct corporations. This small
number of iconic datasets is posted online and the datasets form the back-
bone of all contemporary artificial intelligence. You might even find your

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 95

own data in them. A friend of mine once found a video of herself as a toddler
in a behavioral science archive; her mother had participated in a parent-child
behavioral study when my friend was little. Researchers still had the video
and still used it for drawing conclusions about the world.

Now, let’s go through a classic practice exercise: we’ll use machine learn-
ing to predict who survived the Titanic crash. Think about what happened
on the Titanic after it hit the iceberg. Did you picture Leonardo di Caprio
and Kate Winslet sliding across the decks of the ship? That’s not real—
but it probably colors your recall of the event, if you’ve seen the movie as
many times as I have. It’s quite likely that you’ve seen the movie at least
once. Titanic earned $659 million and $1.5 billion overseas, making it the
biggest movie in the world in 1997 and the second-highest-grossing film
ever worldwide. (Titanic director James Cameron also holds the number-
one spot for his other blockbuster, Avatar.) The film stayed in theaters for
almost a year, fueled in part by young people who went to the theater
to watch it over and over again.13 Titanic the movie has become a part of
our collective memory, just like the actual Titanic maritime disaster. Our
brains quite commonly confuse actual events with realistic fiction. It’s
unfortunate, but it’s normal. This confusion complicates the way we per-
ceive risk.

We draw conclusions about risk based on heuristics, or informal rules.
These heuristics are affected by stories that are easy to recall and by emo-
tionally resonant experiences. For example: When he was a little boy, New
York Times columnist Charles Blow was attacked by a vicious dog. The dog
almost tore his face off. As an adult, he writes in his memoir, he remains wary
of strange dogs.14 This makes perfect sense. Being a small child attacked by
a large animal is traumatic, and of course it would be the first thing some-
one would think of when seeing a dog for the rest of his life. Reading the
book, I empathized with the little boy and felt scared when he felt scared.
The day after I read Blow’s memoir, I saw a man walking a dog without a
leash in a park near my house—and I immediately thought of Blow and
how other people who are afraid of dogs would be made uncomfortable by
the fact that this dog was not on a leash. I wondered if the dog would go
berserk and, if so, what would happen. The story affected my perception of
risk. This is the same thinking that leads people to carry pepper spray after
watching a lot of episodes of Law & Order: SVU or to check the back seat
of the car for nasty surprises after watching a horror movie. The technical

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

96 Chapter 7

name is the availability heuristic.15 The stories that spring to mind first are
the ones we tend to think are the most important or occur most frequently.

Perhaps because it features so prominently in our collective imagination,
the Titanic disaster is commonly used for teaching machine learning. Spe-
cifically, a list of the passengers on the Titanic is used to teach students how
to generate predictions using data. It works well as a class exercise because
almost all of the students have seen Titanic or know about the disaster. This
is valuable for an instructor because you don’t have to spend too much class
time going over the historical context: you can get right to the fun part,
which is the prediction.

I’m going to take you through the fun part using supervised learning.
I think it is important to see exactly what happens when someone does
machine learning. There are plenty of sites online that have ML tutorials
if you’re interested in going through the exercise yourself. I’m going to
take you through a tutorial from a site called DataCamp, which was recom-
mended as a first step for competing in data-science competitions by a dif-
ferent site, Kaggle.16 Kaggle, which is owned by Google’s parent company,
Alphabet, is a site in which people compete to get the highest score for
analyzing a dataset. Data scientists use it to compete in teams, sharpen their
skills, or practice collaborating. It’s also useful for teaching students about
data science or for finding datasets.

We’re going to do a DataCamp Titanic tutorial using Python and a few
popular Python libraries: pandas, scikit-learn, and numpy. A library is a lit-
tle bucket of functions sitting somewhere on the Internet. When we import
a library, we make its functions available to the program we’re writing. One
way to think about it is to think about a physical library. I’m a member of
the New York Public Library (NYPL). Whenever I go to stay somewhere for
more than a week, for work or for vacation, I generally try to go to the local
library and get a library card. Signing up for a local library card allows me
to use all the books and resources available at that library. For the time that
I’m a local library member, I can use all my core NYPL resources plus the
unique resources of the local library. In a Python program, we start with a
whole bunch of built-in functions: those are the NYPL. Importing a new
library is like signing up for the local library card. Our program can use all
the good stuff in the core Python library plus the nifty functions written by
the researchers and open-source developers who made and published the
scikit-learn library, for example.

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 97

Pandas, another library we’ll use, has a container called a DataFrame
that “holds” a set of data. This type of container is also called an object, as
in object-oriented programming. Object is a generic term in programming, just
as it is in the real world. In programming, an object is a conceptual wrapper
for a little package of data, variables, and code. Having the label object gives
us something to hold on to. We need to conceptualize our package of bits
as something in order to think about it and talk about it.

The first thing we do is break our data into two sets: training data and
test data. We’re going to develop a model, train it on the training data, then
run it on the test data. Remember how there is general AI and narrow AI?
This is narrow. Let’s start by typing the following:

import pandas as pd
import numpy as np
from sklearn import tree, preprocessing

We’ve just imported several libraries that we’ll use for our analysis. We use
an alias, pd, for pandas, and the alias np for numpy. We now have access to
all of the functions in pandas and numpy. We can choose to import all of
the functions or just a few. From scikit-learn, we’ll import only two func-
tions. One is named tree and the other is named preprocessing.

Next, let’s import the data from a comma-separated values (CSV) file that
is also sitting somewhere on the Internet. Specifically, this CSV file is sit-
ting on a server owned by Amazon Web Services (AWS). We can tell because
the base URL of the file (the first part after http://) is s3.amazonaws.com.
A CSV file is a file of structured data in which each column is separated by
a comma. We’re going to import two different Titanic data files from AWS.
One is a training data set, another is a test data set. Both data sets are in CSV
format. Let’s import the data:

train_url =
"http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/
train.csv"
train = pd.read_csv(train_url)

test_url = "http://s3.amazonaws.com/assets.datacamp.com/
course/Kaggle/test.csv"
test = pd.read_csv(test_url)

pd.read_csv() means “please invoke the read_csv() function, which lives in
the pd (pandas) library.” Technically, we created a DataFrame object and
called one of its built-in methods. Regardless, the data is now imported

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

http://
http://s3.amazonaws.com

98 Chapter 7

into two variables: train and test. We’ll use the data in the train variable to
create the model, and then we’ll use the data in the test variable to test our
model’s accuracy.

Let’s see what’s in the head, or the first few lines, of the training data:

print(train.head())

PassengerId Survived Pclass \

0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3

Name Sex Age SibSp \

0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley

(Florence Briggs Th…
female 38.0 1

2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath

(Lily May Peel)
female 35.0 1

4 Allen, Mr. William Henry male 35.0 0

Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S

It looks like the data is twelve columns. The columns are labeled Passen-
gerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin,
and Embarked. What do these column headings mean?

To answer this, we need a data dictionary, which is provided with most
datasets. The data dictionary reveals the following:

Pclass = Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
Survived = Survival (0 = No; 1 = Yes)
Name = Name
Sex = Sex

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 99

Age = Age (in years; fractional if age less than one (1). If
the age is estimated, it is in the form xx.5)
Sibsp = Number of Siblings/Spouses Aboard
Parch = Number of Parents/Children Aboard
Ticket = Ticket Number
Fare = Passenger Fare (pre-1970 British pound)
Cabin = Cabin number
Embarked = Port of Embarkation (C = Cherbourg; Q = Queenstown;
S = Southampton)

For most of the columns, we have data. For some column values, we do
not have data. For PassengerId 1, Mr. Owen Harris Braund, the value for
Cabin is NaN. This means “not a number.” NaN is different than zero; zero
is a number. NaN means that there is no value for this variable. This distinc-
tion might seem unimportant for everyday life, but it’s crucially important
in computer science. Remember that mathematical language is precise. For
example, NULL indicates an empty set, which is also different than NaN
or zero.

Let’s see what’s in the first few lines of the test dataset:

print(test.head())

PassengerId Pclass Name Sex \

0 892 3 Kelly, Mr. James male
1 893 3 Wilkes, Mrs. James (Ellen Needs) female
2 894 2 Myles, Mr. Thomas Francis male
3 895 3 Wirz, Mr. Albert male
4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female

Age SibSp Parch Ticket Fare Cabin Embarked

0 34.5 0 0 330911 7.8292 NaN Q
1 47.0 1 0 363272 7.0000 NaN S
2 62.0 0 0 240276 9.6875 NaN Q
3 27.0 0 0 315154 8.6625 NaN S
4 22.0 1 1 3101298 12.2875 NaN S

As you can see, test has the same type of data as train, minus the Survived
column. Great! Our goal is to create a Survived column in the test data
that contains a prediction for each passenger. (Of course, someone already

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

100 Chapter 7

knows which passengers in the test data set survived—but it wouldn’t be
much of a tutorial if the data set already contained the answers.)

Next, we’re going to run some basic summary statistics on the training
dataset in order to get to know it a little better. When data journalists do
this, we call it interviewing the data. We interview data just like we might
interview a human source. A human has a name, an age, a background; a
dataset has a size and a number of columns. Asking a column of data about
its average value is a bit like asking someone to spell their last name.

We can get to know our data a bit by running a function called describe
that assembles some basic summary statistics and puts them into a handy
table, as follows:

train.describe()

PassengerId Survived Pclass Age SibSp Parch Fare

count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

The training dataset has 891 records. Of these, only 714 records show the
age of the passenger. For the data we have available, the average age of the
passengers is 29.699118; normal people would say that the average age is
thirty.

A few of these statistics require interpretation: Survived has a min of 0
and a max of 1. In other words, it is a Boolean value. Either someone sur-
vived (1), or they didn’t (0). We can calculate an average, which turns out to
be 0.38. Similarly, we can calculate an average for Pclass, or passenger class.
Passengers’ tickets were for first, second, or third class. The average doesn’t
literally mean that someone traveled 2.308 class.

Now that we’ve gotten to know our data a little bit, it’s time to do some
analysis. Let’s first look at the number of passengers. We can use a function
called value_counts to do this. Value_counts will show how many values
there are for each distinct category in a column. In other words, how many
passengers are traveling in each passenger class? Let’s find out:

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 101

train["Pclass"].value_counts()
1 216
2 184
3 491
Name: Pclass, dtype: int64

The training data shows 491 passengers traveling third class, 184 passengers
traveling second class, and 216 passengers traveling first class.

Let’s look at the numbers for survival:

train["Survived"].value_counts()
0 549
1 342
Name: Survived, dtype: int64

The training data shows that 549 people perished and 342 survived.
Let’s see those numbers normalized:

print(train["Survived"].value_counts(normalize = True))
0 0.616162
1 0.383838
Name: Survived, dtype: float64

Sixty-two percent of passengers perished, and 38 percent survived. In other
words, most people died in the disaster. If we were to make a prediction
about whether a random passenger survived, we’d likely predict that they
did not survive.

We could stop here if we wanted. We just drew a conclusion that would
allow us to make a reasonable prediction. We can do better, however, so
let’s keep going. Are there any factors that might help improve the predic-
tion? In addition to survival, we have some other columns in the data:
Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, and Embarked.

Pclass is a proxy for the socioeconomic class of the passengers. That
might be useful as a predictor. We could guess that first-class passengers got
on the boats before third-class passengers. Sex is also a reasonable guess for
a predictor. We know that “women and children first” was a principle used
during maritime disasters. This principle dates to 1852, when the British
HMS Birkenhead, a troop ship, ran aground off the coast of South Africa.
It’s not a uniformly applied principle, but it’s recurrent enough to use for
social analysis.

Now, let’s do some comparisons to see if we can find variables that seem
predictive:

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

102 Chapter 7

Passengers that survived vs passengers that passed away
print(train["Survived"].value_counts())
0 549
1 342
Name: Survived, dtype: int64

As proportions
print(train["Survived"].value_counts(normalize = True))
0 0.616162
1 0.383838
Name: Survived, dtype: float64

Males that survived vs males that passed away
print(train["Survived"][train["Sex"] == 'male'].value_counts())
0 468
1 109
Name: Survived, dtype: int64

Females that survived vs females that passed away
print(train["Survived"][train["Sex"] == 'female'].value_counts())
1 233
0 81
Name: Survived, dtype: int64

Normalized male survival
print(train["Survived"][train["Sex"] == 'male'].value_counts
(normalize=True))
0 0.811092
1 0.188908
Name: Survived, dtype: float64

Normalized female survival
print(train["Survived"][train["Sex"] == 'female'].value_counts
(normalize=True))
1 0.742038
0 0.257962
Name: Survived, dtype: float64

We can see that 74 percent of females survived, and only 18 percent of
males survived. Therefore, for a random person, we might adjust our
guess to say that they survived if they were female, but not if they were
male.

Remember that the goal at the beginning of this section was to create a
Survived column in the test data that contains a prediction for each pas-
senger. At this point, we could create a Survived column and fill in “1”

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 103

(meaning “yes, this passenger survived”) for 74 percent of the females
and “0” (meaning “no, this passenger did not survive”) for the remaining
females. We could fill in “1” for 18 percent of the male passengers and “0”
for 81 percent of the remaining males.

But we won’t, because that would mean assigning probable outcomes
randomly based only on gender. We know there are other factors in the
data that influence the outcome. (If you’re truly curious to see the nitty-
gritty of how this is determined, I encourage you to look at the DataCamp
tutorial or something similar online.) What about women traveling third
class? Women traveling first class? Women traveling with spouses? Women
traveling with children? This quickly becomes tedious to calculate manu-
ally, so we’re going to train a model to do the guessing for us based on the
factors that we know.

To construct the model, we’re going to use a decision tree, a type of algo-
rithm. Remember, there are a handful of algorithms that are standard in
machine learning. They have names like decision tree, or random for-
est, or artificial neural network, or naive Bayes, or k-nearest neighbor, or
deep learning. Wikipedia’s list of machine-learning algorithms is quite
comprehensive.

These algorithms come packaged into software like pandas. Very few
people write their own algorithms for machine learning; it’s much easier to
use one that already exists. Writing a new algorithm is like writing a new
programming language. You really have to care a lot and you have to devote
a lot of time to doing it. I’m going to wave my hands and say “math” to
explain what happens inside the model. Sorry. If you really want to know,
I encourage you to read more about it. It’s very interesting, but it’s beyond
the scope of the current discussion.

Now, let’s train the model on the training data. We know from our
exploratory analysis that the features that matter are fare class and sex. We
want to create a guess for survival. We already know whether the passengers
in the training data survived or not. We’re going to make the model guess,
then compare the guesses to reality. Whatever the percentage is that we get
right is our accuracy number.

Here’s an open secret of the big data world: all data is dirty. All of it.
Data is made by people going around and counting things or made by sen-
sors that are made by people. In every seemingly orderly column of num-
bers, there is noise. There is mess. There is incompleteness. This is life. The

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

104 Chapter 7

problem is, dirty data doesn’t compute. Therefore, in machine learning,
sometimes we have to make things up to make the functions run smoothly.

Are you horrified yet? I was, the first time I realized this. As a journalist,
I don’t get to make anything up. I need to fact-check each line and justify
it for a fact-checker or an editor or my audience—but in machine learning,
people often make stuff up when it’s convenient.

Now, in physics you can do this. If you want to find the temperature at
point A inside a closed container, you take the temperature at two other
equidistant points (B and C) and assume that the temperature at point A
is halfway between the B and C temperatures. In statistics … well, this is
how it works, and the missing-ness contributes to the inherent uncertainty
of the whole endeavor. We’ll use a function called fillna to fill in all of the
missing values:

train["Age"] = train["Age"].fillna(train["Age"].median())

The algorithm can’t run with missing values. Thus, we need to make up the
missing values. Here, DataCamp recommends using the median.

Let’s take a look at the data to see what’s in there:

Print the train data to see the available features
print(train)

PassengerId Survived Pclass \

0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
5 6 0 3
6 7 0 1
7 8 0 3
8 9 1 3
9 10 1 2

10 11 1 3
11 12 1 1
12 13 0 3
13 14 0 3
14 15 0 3
15 16 1 2
16 17 0 3

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 105

PassengerId Survived Pclass \

17 18 1 2
18 19 0 3
19 20 1 3
20 21 0 2
21 22 1 2
22 23 1 3
23 24 1 1
24 25 0 3
25 26 1 3
26 27 0 3
27 28 0 1
28 29 1 3
29 30 0 3

.. … … …
861 862 0 2
862 863 1 1
863 864 0 3
864 865 0 2
865 866 1 2
866 867 1 2
867 868 0 1
868 869 0 3
869 870 1 3
870 871 0 3
871 872 1 1
872 873 0 1
873 874 0 3
874 875 1 2
875 876 1 3
876 877 0 3
877 878 0 3
878 879 0 3
879 880 1 1
880 881 1 2
881 882 0 3
882 883 0 3
883 884 0 2
884 885 0 3
885 886 0 3
886 887 0 2
887 888 1 1

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

106 Chapter 7

PassengerId Survived Pclass \

888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \

0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence

Briggs Th…
female 38.0 1

2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May

Peel)
female 35.0 1

4 Allen, Mr. William Henry male 35.0 0
5 Moran, Mr. James male 28.0 0
6 McCarthy, Mr. Timothy J male 54.0 0
7 Palsson, Master. Gosta Leonard male 2.0 3
8 Johnson, Mrs. Oscar W (Elisabeth

Vilhelmina Berg)
female 27.0 0

9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
12 Saundercock, Mr. William Henry male 20.0 0
13 Andersson, Mr. Anders Johan male 39.0 1
14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0
15 Hewlett, Mrs. (Mary D Kingcome) female 55.0 0
16 Rice, Master. Eugene male 2.0 4
17 Williams, Mr. Charles Eugene male 28.0 0
18 Vander Planke, Mrs. Julius (Emelia Maria

Vande…
female 31.0 1

19 Masselmani, Mrs. Fatima female 28.0 0
20 Fynney, Mr. Joseph J male 35.0 0
21 Beesley, Mr. Lawrence male 34.0 0
22 McGowan, Miss. Anna “Annie” female 15.0 0
23 Sloper, Mr. William Thompson male 28.0 0
24 Palsson, Miss. Torborg Danira female 8.0 3
25 Asplund, Mrs. Carl Oscar (Selma Augusta

Emilia…
female 38.0 1

26 Emir, Mr. Farred Chehab male 28.0 0
27 Fortune, Mr. Charles Alexander male 19.0 3
28 O’Dwyer, Miss. Ellen “Nellie” female 28.0 0
29 Todoroff, Mr. Lalio male 28.0 0

.. … … … …

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 107

Name Sex Age SibSp \

861 Giles, Mr. Frederick Edward male 21.0 1
862 Swift, Mrs. Frederick Joel (Margaret

Welles Ba…
female 48.0 0

863 Sage, Miss. Dorothy Edith “Dolly” female 28.0 8
864 Gill, Mr. John William male 24.0 0
865 Bystrom, Mrs. (Karolina) female 42.0 0
866 Duran y More, Miss. Asuncion female 27.0 1
867 Roebling, Mr. Washington Augustus II male 31.0 0
868 van Melkebeke, Mr. Philemon male 28.0 0
869 Johnson, Master. Harold Theodor male 4.0 1
870 Balkic, Mr. Cerin male 26.0 0
871 Beckwith, Mrs. Richard Leonard (Sallie

Monypeny)
female 47.0 1

872 Carlsson, Mr. Frans Olof male 33.0 0
873 Vander Cruyssen, Mr. Victor male 47.0 0
874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28.0 1
875 Najib, Miss. Adele Kiamie “Jane” female 15.0 0
876 Gustafsson, Mr. Alfred Ossian male 20.0 0
877 Petroff, Mr. Nedelio male 19.0 0
878 Laleff, Mr. Kristo male 28.0 0
879 Potter, Mrs. Thomas Jr (Lily Alexenia

Wilson)
female 56.0 0

880 Shelley, Mrs. William (Imanita Parrish
Hall)

female 25.0 0

881 Markun, Mr. Johann male 33.0 0
882 Dahlberg, Miss. Gerda Ulrika female 22.0 0
883 Banfield, Mr. Frederick James male 28.0 0
884 Sutehall, Mr. Henry Jr male 25.0 0
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen “Carrie” female 28.0 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

108 Chapter 7

Parch Ticket Fare Cabin Embarked

4 0 373450 8.0500 NaN S
5 0 330877 8.4583 NaN Q
6 0 17463 51.8625 E46 S
7 1 349909 21.0750 NaN S
8 2 347742 11.1333 NaN S
9 0 237736 30.0708 NaN C

10 1 PP 9549 16.7000 G6 S
11 0 113783 26.5500 C103 S
12 0 A/5. 2151 8.0500 NaN S
13 5 347082 31.2750 NaN S
14 0 350406 7.8542 NaN S
15 0 248706 16.0000 NaN S
16 1 382652 29.1250 NaN Q
17 0 244373 13.0000 NaN S
18 0 345763 18.0000 NaN S
19 0 2649 7.2250 NaN C
20 0 239865 26.0000 NaN S
21 0 248698 13.0000 D56 S
22 0 330923 8.0292 NaN Q
23 0 113788 35.5000 A6 S
24 1 349909 21.0750 NaN S
25 5 347077 31.3875 NaN S
26 0 2631 7.2250 NaN C
27 2 19950 263.0000 C23 C25 C27 S
28 0 330959 7.8792 NaN Q
29 0 349216 7.8958 NaN S

.. … … … … …
861 0 28134 11.5000 NaN S
862 0 17466 25.9292 D17 S
863 2 CA. 2343 69.5500 NaN S
864 0 233866 13.0000 NaN S
865 0 236852 13.0000 NaN S
866 0 SC/PARIS 2149 13.8583 NaN C
867 0 PC 17590 50.4958 A24 S
868 0 345777 9.5000 NaN S
869 1 347742 11.1333 NaN S
870 0 349248 7.8958 NaN S
871 1 11751 52.5542 D35 S
872 0 695 5.0000 B51 B53 B55 S
873 0 345765 9.0000 NaN S
874 0 P/PP 3381 24.0000 NaN C

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 109

Parch Ticket Fare Cabin Embarked

875 0 2667 7.2250 NaN C
876 0 7534 9.8458 NaN S
877 0 349212 7.8958 NaN S
878 0 349217 7.8958 NaN S
879 1 11767 83.1583 C50 C
880 1 230433 26.0000 NaN S
881 0 349257 7.8958 NaN S
882 0 7552 10.5167 NaN S
883 0 C.A./SOTON 34068 10.5000 NaN S
884 0 SOTON/OQ 392076 7.0500 NaN S
885 5 382652 29.1250 NaN Q
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q
[891 rows x 12 columns]

If you read all of those hundreds of lines, bravo—but if you skipped
ahead, I’m not surprised. I printed many rows of data here, instead of using
a small subset, in order to illustrate what it feels like to be a data scien-
tist. Working with columns of numbers feels value-neutral and occasion-
ally tedious. There’s a certain amount of dehumanization that occurs when
you deal only with numbers. It’s not easy to remember that each row in a
dataset represents a real person with hopes, dreams, a family, and a history.

Now that we’ve looked at the raw data, it’s time to start working with
it. Let’s turn it into arrays, which are structures that the computer can
manipulate:

Create the target and features numpy arrays: target,
features_one
target = train["Survived"].values

Preprocess
encoded_sex = preprocessing.LabelEncoder()

Convert into numbers
train.Sex = encoded_sex.fit_transform(train.Sex)
features_one = train[["Pclass," "Sex," "Age," "Fare"]].values

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

110 Chapter 7

Fit the first decision tree: my_tree_one
my_tree_one = tree.DecisionTreeClassifier()
my_tree_one = my_tree_one.fit(features_one, target)

What we’re doing is running a function called fit on the decision tree
classifier called my_tree_one. The features we want to consider are Pclass,
Sex, Age, and Fare. We’re instructing the algorithm to figure out what rela-
tionship among these four predicts the value in the target field, which is
Survived:

Look at the importance and score of the included features
print(my_tree_one.feature_importances_)
[0.12315342 0.31274009 0.22675108 0.3373554]

The feature_importances attribute shows the statistical significance of each
predictor.

The largest number in this group of values is the considered the most
important:

Pclass = 0.1269655
Sex = 0.31274009
Age = 0.23914906
Fare = 0.32114535

Fare is the largest number. We can conclude that passenger fare is the most
important factor in determining whether a passenger survived the Titanic
disaster.

At this point in our data analysis, we can run a function to show exactly
how accurate our calculation is within the mathematical constraints of the
universe represented by this data. Let’s use the score function to find the
mean accuracy:

print(my_tree_one.score(features_one, target))
0.977553310887

Wow, 97 percent! That feels great. If I got a 97 percent on an exam, I’d
be perfectly content. We could call this model 97 percent accurate. The
machine just “learned” in that it constructed a mathematical model. The
model is stored in the object called my_tree_one.

Next, we’ll take this model and apply it to the set of test data. Remember:
the test data doesn’t have a Survived column. Our job is to use the model
to predict whether each passenger in the test data survived or perished. We
know that fare is the most important predictor according to this model, but

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 111

age and sex and passenger class matter mathematically too. Let’s apply the
model to the test data and see what happens:

Fill any missing fare values with the median fare
test["Fare"] = test["Fare"].fillna(test["Fare"].median())

Fill any missing age values with the median age
test["Age"] = test["Age"].fillna(test["Age"].median())

Preprocess
test_encoded_sex = preprocessing.LabelEncoder()
test.Sex = test_encoded_sex.fit_transform(test.Sex)

Extract important features from the test set: Pclass, Sex,
Age, and Fare
test_features = test[["Pclass," "Sex," "Age," "Fare"]].values
print('These are the features:\n')
print(test_features)

Make a prediction using the test set and print
my_prediction = my_tree_one.predict(test_features)
print('This is the prediction:\n')
print(my_prediction)

Create a data frame with two columns: PassengerId & Survived
Survived contains the model’s prediction
PassengerId =np.array(test["PassengerId"]).astype(int)
my_solution = pd.DataFrame(my_prediction, PassengerId, columns
= ["Survived"])
print('This is the solution in toto:\n')
print(my_solution)

Check that the data frame has 418 entries
print('This is the solution shape:\n')
print(my_solution.shape)

Write the solution to a CSV file with the name my_solution.csv
my_solution.to_csv("my_solution_one.csv," index_label =
["PassengerId"])

Here’s the output:

These are the features:
[[3. 1. 34.5 7.8292]
 [3. 0. 47. 7.]
 [2. 1. 62. 9.6875] …,
 [3. 1. 38.5 7.25]
 [3. 1. 27. 8.05]
 [3. 1. 27. 22.3583]]

�)'I**7):��0�)�:"H!��
)H"�"9"7A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H7C:�H!���')A:��,7B8)": ���0�4�1)�**�����
�
���������
99�**�:���EH�B8�)�����������1)'2I�*H�-8''#�,�CH)7A�
,)�7H�:��)'B�.7*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

�4
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

112 Chapter 7

This is the prediction:
[0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0
 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0
 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0
 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0
 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1
 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0
 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1
 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0
 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1
 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0
 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0
 0 1 1 1 1 0 0 1 0 0 0]
This is the solution in toto:
 Survived
892 0
893 0
894 1
895 1
896 1
897 0
898 0
899 0
900 1
901 0
902 0
903 0
904 1
905 1
906 1
907 1
908 0
909 1
910 1
911 0
912 0
913 1
914 1
915 0
916 1
917 0
918 1
919 1

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 113

920 1
921 0
… …
1280 0
1281 0
1282 0
1283 1
1284 1
1285 0
1286 0
1287 1
1288 0
1289 1
1290 0
1291 0
1292 1
1293 0
1294 1
1295 0
1296 0
1297 0
1298 0
1299 0
1300 1
1301 1
1302 1
1303 1
1304 0
1305 0
1306 1
1307 0
1308 0
1309 0
[418 rows x 1 columns]
This is the solution shape:
(418, 1)

That new column, Survived, contains a prediction for each of the 418 pas-
sengers listed in the test data set. We can write the predictions to a CSV file
called my_solution_one.csv, upload the file to DataCamp, and verify that our
predictions were 97 percent accurate. Ta-da! We just did machine learning.
It was entry level, but it was machine learning nonetheless. When someone
says they have “used artificial intelligence to make a decision,” usually they

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

114 Chapter 7

mean “used machine learning,” and usually they went through a process
similar to the one we just worked through.

We created the Survived column and got a number that we can call 97
percent accurate. We learned that fare is the most influential factor in a
mathematical analysis of Titanic survivor data. This was narrow artificial
intelligence. It was not anything to be scared of, nor was it leading us
toward a global takeover by superintelligent computers. “These are just sta-
tistical models, the same as those that Google uses to play board games or
that your phone uses to make predictions about what word you’re saying in
order to transcribe your messages,” Carnegie Mellon professor and machine
learning researcher Zachary Lipton told the Register about AI. “They are no
more sentient than a bowl of noodles.”17

For a programmer, writing an algorithm is that easy. It gets made, it gets
deployed, it seems to work. Nobody follows up. You maybe try turning the
dials differently the next time to see if the accuracy seems to go up any.
You try to get the highest number you can. Then, you move on to the next
thing.

Meanwhile, out in the world, these numbers have consequences. It
would be unwise to conclude from this data that people who pay more
have a greater chance of surviving a maritime disaster. Nevertheless, a cor-
porate executive could easily argue that it would be statistically legitimate
to conclude this. If we were calculating insurance rates, we could say that
people who pay higher ticket prices are less likely to die in iceberg accidents
and thus represent a lower risk of early payout. People who pay more for
tickets are wealthier than people who don’t. This would allow us to charge
rich people less for insurance. That’s bad! The point of insurance is that risk
is distributed evenly across a large pool of people. We’ve made more money
for the insurance company, but we’ve not promoted the greatest good.

These types of computational techniques are used for price optimization,
or grouping customers into very small segments to offer different prices to
different groups. Price optimization is used in industries from insurance
to travel—and it often results in price discrimination. A 2017 analysis by
ProPublica and Consumer Reports found that in California, Illinois, Texas,
and Missouri, some major insurers charged people who lived in minority
neighborhoods as much as 30 percent more than people who lived in other
areas with similar accident costs.18 A 2014 analysis by the Wall Street Jour-
nal found that customers were being charged different prices for the same

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 115

ordinary stapler on Staples.com. The price was higher or lower based on the
customer’s estimated zip code.19 Christo Wilson, David Lazer, and a team
of other Northeastern University researchers found different prices were
offered to customers on Homedepot.com and on travel sites depending on
whether the users viewed the sites on mobile devices or desktops.20 Amazon
admitted to experimenting with differential pricing in 2000. CEO Jeff Bezos
apologized, calling it “a mistake.”21

In an unequal world, if we make pricing algorithms based on what the
world looks like, women and poor and minority customers inevitably get
charged more. Math people are often surprised by this; women and poor
and minority people are not surprised by this. Race, gender, and class
influence pricing in a variety of obvious and devious ways. Women are
charged more than men for haircuts, dry cleaning, razors, and even deodor-
ant. Asian-Americans are twice as likely to be charged more for SAT prep
courses.22 African American restaurant servers make less in tips than white
colleagues.23 Being poor often means paying more for necessities. Furniture
on installment plans costs more than outright purchase. Payday loans have
a far higher interest rate than bank loans. Housing is considered afford-
able if it takes 30 percent or less of a household’s monthly income, but
poor renters are often stuck paying more for housing because of a variety
of factors related to economic instability. “In Milwaukee, the majority of
poor renters devote at least half their income to rent, and a third pay at
least 80 percent,” sociologist Pat Sharkey writes in a review of two ethnog-
raphies, Matthew Desmond’s Evicted: Poverty and Profit in the American City
and Mitchell Dunier’s Ghetto: The Invention of a Place, the History of an Idea.24
Inequality is unfair, but it’s not uncommon. If machine-learning models
simply replicate the world as it is now, we won’t move toward a more just
society. “The allure of the technology is clear—the ancient aspiration to
predict the future, tempered with a modern twist of statistical sobriety,” law
professor and AI ethics expert Frank Pasquale writes in The Black Box Society.
“Yet in a climate of secrecy, bad information is as likely to endure as good,
and to result in unfair and even disastrous predictions.”25

Part of the reason we run into problems when making social decisions
with machine learning is that the numbers camouflage important social
context. In the Titanic example, we picked a classifier, survival. We used
features to predict our classifier, but there are other possible factors. For
example, our Titanic dataset includes only age, sex, and the other factors.

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

http://Staples.com
http://Homedepot.com

116 Chapter 7

We built our predictor based on the information we had. However, because
this was a human and not a mathematical event, there were other factors
at work.

Let’s look at the night of the Titanic disaster. The Titanic received mul-
tiple warnings of ice from nearby ships over the course of the day on April
14, 1912. At 11:40 p.m., the ship hit an iceberg. Just after midnight, the
Titanic’s captain, Edward John Smith, mustered the passengers and began
to evacuate the ship. Smith issued an order: “Put the women and children
in and lower away.” First Officer William Murdoch was in charge of the
lifeboats on the starboard side. Second Officer Charles Lightoller was in
charge of the boats on the port side. Each man interpreted the captain’s
command differently. Murdoch thought the captain meant women and
children first. Lightoller thought the captain meant women and children
only. Murdoch let men onto the boats if all the nearby women and children
had been loaded. Lightoller loaded all the women and children nearby,
then lowered the boat even if it had empty seats. Both men let the boats
down into the water even if the full capacity of sixty-five people had not
been reached. There were not enough lifeboats for the people on board:
Titanic carried only twenty boats for a ship rated to carry 3,547 people. The
best records show that the ship carried a light load of 892 crew members
and 1,320 passengers.

There is a potentially interesting test to be done on lifeboat numbers.
Murdoch’s boats on the starboard side had odd numbers; Lightoller’s boats
had even numbers. Men probably survived at a different rate according
to their lifeboat number, because Lightoller, who was in charge of even-
numbered boats, didn’t load men. However, the lifeboat number isn’t in
the data. This is a profound and insurmountable problem. Unless a factor is
loaded into the model and represented in a manner a computer can calcu-
late, it won’t count. Not everything that counts is counted. The computer
can’t reach out and find out the extra information that might matter. A
human can.

There’s also the problem of false causality. If we did have the lifeboat
numbers, from a computational perspective it might look like men in odd-
numbered lifeboats had a better chance of surviving the Titanic disaster. If
we made decisions based on data, we might decide that all lifeboats should
be odd-numbered so that we could save more men in case of emergency.
Of course, this is ridiculous; it was the officer, not the number of the boat,
that made the difference.

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 117

Two young men also confound the pure mathematical explanation.
Walter Lord’s A Night to Remember, a bestselling nonfiction account of the
Titanic disaster, is a moving account of the ship’s last hours.26 Lord tells the
story of Jack Thayer, a seventeen-year-old who boarded the Titanic in Cher-
bourg, France, after a long European holiday with his parents. Thayer made
a friend on the ship, Milton Long, another young man his age traveling
in first class. As the crisis on the ship intensified, both young men helped
to get other passengers to safety. By 2:00 a.m., almost all the lifeboats had
launched, with Long and Thayer handing women and children into the
lifeboats. By 2:15 a.m., the last lifeboats had washed away in the swells. The
ship was listing to port. There was an explosion; a wave crashed over the
boat deck. Chef John Collins was standing on the boat deck holding a baby,
helping a steward and a woman from steerage who was traveling with two
children. He and the others were swept out to sea. The baby was torn out of
his arms by the force of the wave.

Thayer and Long saw the chaos on the decks. Suddenly, the lights winked
out; the water had reached the fireboxes in boiler room two. The only light
came from the moon and the stars and the lanterns on the lifeboats slowly
rowing away from the sinking ship. The second funnel collapsed with a
crash. Thayer and Long looked around: the lifeboats were gone and no res-
cue ship was in sight. They realized the moment had come to jump. They
shook hands. They wished each other good luck. Lord writes:

Long put his legs over the rail, while Thayer straddled it and began unbuttoning his
overcoat. Long, hanging over the side and holding the rail with his hands, looked up
at Thayer and asked, “You’re coming, boy?”

“Go ahead, I’ll be right with you,” Thayer reassured him.
Long slid down, facing the ship. Ten seconds later Thayer swung his other leg

over the rail and sat facing out. He was about ten feet above the water. Then with a
push he jumped as far out as he could.

Of these two techniques for abandoning ship, Thayer’s was the only one that
worked.

Thayer survived by swimming to a nearby overturned lifeboat and cling-
ing to it with forty others. He watched as the Titanic cracked in half, the
bow and stern slipping under the water amid a field of debris. Thayer heard
people crying in the water. It sounded like locusts, he thought. Eventu-
ally, lifeboat twelve picked up Thayer and the others from the icy water.
Help arrived hours later. Thayer shivered in the lifeboat until 8:30 the next
morning, when the passengers were rescued by the Carpathia.

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

118 Chapter 7

Thayer and Long were young men of the same age, same physical abil-
ity, same social status, and absolutely the same opportunity to survive the
disaster. The difference came down to a jump. Thayer leaped out as far as he
could away from the ship; Long dropped down next to the ship. Long was
sucked into the abyss; Thayer wasn’t. What I find unsettling is that what-
ever the computer predicts for Thayer or Long, it will be wrong. The predic-
tion is based only on fare class, age, and sex—but what really happened was
a difference of jumps. The computer just fundamentally misunderstands.
Long’s death, the randomness of it, is why our statistical prediction of who
survived and who died on the Titanic will never be 100 percent accurate—
no statistical prediction can or will ever be 100 percent accurate—because
human beings are not and never will be statistics.

This speaks to a principle called the unreasonable effectiveness of data.
Unless you are alert to the possibilities of discrimination and disarray, AI
seems like it works beautifully. One of my favorite explanations of the
search to explain the world through computer science comes from a paper
by Google researchers Alon Halevy, Peter Norvig, and Fernando Pereira.
They write:

Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in the
Natural Sciences” examines why so much of physics can be neatly explained with
simple mathematical formulas such as f=ma or e=mc2. Meanwhile, sciences that in-
volve human beings rather than elementary particles have proven more resistant
to elegant mathematics. Economists suffer from physics envy over their inability
to neatly model human behavior. An informal, incomplete grammar of the English
language runs over 1,700 pages. Perhaps when it comes to natural language proc-
essing and related fields, we’re doomed to complex theories that will never have the
elegance of physics equations. But if that’s so, we should stop acting as if or goal is
to author extremely elegant theories, and instead embrace complexity and make use
of the best ally we have: the unreasonable effectiveness of data.27

Data is unreasonably effective—seductively so, even. This explains why
we can build a classifier that seems to predict with 97 percent accuracy
whether a passenger survives the Titanic disaster and why a computer can
defeat a human Go champion. It also explains why, when we look closely
at what happens during the machine-learning process, the machine doesn’t
take into account any of the flukes that humans know happen in real-life
disaster situations. Data is very effective. However, the data-driven approach
ignores a number of factors that humans think matter a great deal.

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

Machine Learning 119

Law and society are set up to accommodate all of the things that humans
think matter. Data-driven decisions rarely fit with these complex sets of
rules. The same unreasonable effectiveness of data appears in translation,
voice-controlled smart home gadgets, and handwriting recognition. Words
and word combinations are not understood by machines the way that
humans understand them. Instead, statistical methods for speech recog-
nition and machine translation rely on vast databases full of short word
sequences, or n-grams, and probabilities. Google has been working on these
problems for decades and has the best scientific minds on these topics, and
they have more data than anyone has ever before assembled. The Google
Books corpus, the New York Times corpus, the corpus of everything every-
one has ever searched for using Google: it turns out that when you load
all of this in and assemble a massive database of how often words occur
near each other, it’s unreasonably effective. Let’s take something simple.
In n-grams, the word boat usually occurs near water, so the two are prob-
ably related. The probability is higher that boat is closer to water than to
electorate or stink bug, so a search pulls up terms or documents related to
boats and water rather than to boats and stink bugs. People generally talk
about the same types of things and search for the same types of things,
and common knowledge is really quite common. The machine is not really
learning; the search process is just inspired by human learning. If you read
the math, which is all posted online, it’s very clear that these calculations
are not magic and are just math. The computer will get enough things right
enough of the time that we may be tempted to call it mostly correct—but it
will get things right for exactly the wrong reasons.

Because social decisions are about more than just calculations, problems
will always ensue if we use data alone to make decisions that involve social
and value judgments. Traveling first class on the Titanic meant someone
was more likely to survive—but it would be wrong to deploy a model that
suggests first-class travelers deserve to survive disasters more than people
who travel second or third class. Nor should we do other things that derive
from a flawed model like the one we created. Our Titanic model could be
used to justify charging first-class passengers less for travel insurance, but
that’s absurd: we shouldn’t penalize people for not being rich enough to
travel first class. Most of all, we should know by now that there are some
things machines will never learn and that human judgment, reinforce-
ment, and interpretation is always necessary.

�)'I**�):��0�)�:"H!��
)H"�"9"�A��C"CH�AA" �C9����.'.�,'BEIH�)*�0"*IC:�)*H�C:�H!��6')A:��,�B8)": ���0���1)�**�����
�
���������
99�**�:�3�EH�B8�)�����������1)'2I�*H�-8''#�,�CH)�A�
,)��H�:��)'B�.�*!"C H'C�'C����� �� �������	��	�

,
'E

/)
"

!H
�M

��
��

�
�0

��
�1

)�
**

��

AA�

)"
!H

*�
)�

*�
)-

�:
�

