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We’ve covered hardware, software, and programming. It’s time to move on 

to a more advanced programming topic: artificial intelligence. To most peo-

ple, the phrase artificial intelligence suggests something cinematic—maybe 

Commander Data, the lifelike cyborg from Star Trek: The Next Generation; 

perhaps Hal 9000 from 2001: A Space Odyssey; or Samantha, the AI system 

from the movie Her; or Jarvis, the AI majordomo that helps Iron Man in the 

Marvel comics and movies. Regardless, here’s what’s important to remem-

ber: those are imaginary. It’s easy to confuse what we imagine and what is 

real—especially when we want something very badly. Many people want AI 

to be real. This usually takes the form of wanting a robot butler to attend to 

your every need. (I will confess to having had many late-night undergradu-

ate conversations about the practical and ethical considerations of having a 

robot butler.) A disproportionate number of the people who make tech fall 

into the camp of desperately wanting Hollywood robots to be real. When 

Facebook’s Mark Zuckerberg built an AI-based home automation system, he 

named it Jarvis.

One excellent illustration of the confusion between real and imaginary 

AI happened to me at the NYC Media Lab’s annual symposium, a kind of 

science fair for grownups. I was giving a demo of an AI system I built. I had 

a table with a monitor and a laptop hooked up to show my demo; three feet 

away was another table with another demo by an art school undergradu-

ate who had created a data visualization. Things became boring when the 

crowd died down, so we got to chatting.

“What’s your project?” he asked.

“It’s an artificial intelligence tool to help journalists quickly and effi-

ciently uncover new story ideas in campaign finance data,” I said.

“Wow, AI,” he said. “Is it a real AI?”
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32  Chapter 3

“Of course,” I said. I was a little offended. I thought: Why would I spend 

my day demonstrating software at this table if I hadn’t made something that 

worked?

The student came over to my table and started looking closely at the 

laptop hooked up to the monitor. “How does it work?” he asked. I gave 

him the three-sentence explanation (you’ll read the longer explanation in 

chapter 11). He looked confused and a little disappointed.

“So, it’s not real AI?” he asked.

“Oh, it’s real,” I said. “And it’s spectacular. But you know, don’t you, that 

there’s no simulated person inside the machine? Nothing like that exists. 

It’s computationally impossible.”

His face fell. “I thought that’s what AI meant,” he said. “I heard about 

IBM Watson, and the computer that beat the champion at Go, and self-

driving cars. I thought they invented real AI.” He looked depressed. I realized 

he’d been looking at the laptop because he thought there was something 

in there—a “real” ghost in the machine. I felt terrible for having burst his 

bubble, so I steered the conversation toward a neutral topic—an upcoming 

Star Wars movie—to cheer him up.

This interaction stuck with me because it helps me remember the differ-

ence between how computer scientists think about AI and how members of 

the public—including highly informed undergraduates working on tech—

think about AI.

General AI is the Hollywood kind of AI. General AI is anything to do 

with sentient robots (who may or may not want to take over the world), 

consciousness inside computers, eternal life, or machines that “think” like 

humans. Narrow AI is different: it’s a mathematical method for prediction. 

There’s a lot of confusion between the two, even among people who make 

technological systems. Again, general AI is what some people want, and 

narrow AI is what we have.

One way to understand narrow AI is this: narrow AI can give you the 

most likely answer to any question that can be answered with a number. It 

involves quantitative prediction. Narrow AI is statistics on steroids.

Narrow AI works by analyzing an existing dataset, identifying patterns 

and probabilities in that dataset, and codifying these patterns and prob-

abilities into a computational construct called a model. The model is a kind 

of black box that we can feed data into and get an answer out of. We can 

take the model and run new data through it to get a numerical answer that 
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Hello, AI  33

predicts something: how likely it is that a squiggle on a page is the letter 

A; how likely it is that a given customer will pay back the mortgage money 

a bank loans to him; which is the best next move to make in a game of 

tic-tac-toe, checkers, or chess. Machine learning, deep learning, neural net-

works, and predictive analytics are some of the narrow AI concepts that are 

currently popular. For every AI system that exists today, there is a logical 

explanation for how it works. Understanding the computational logic can 

demystify AI, just like dismantling a computer helps to demystify hardware.

AI is tied up with games—not because there’s anything innate about the 

connection between games and intelligence, but because computer scien-

tists tend to like certain kinds of games and puzzles. Chess, for example, is 

quite popular in their crowd, as are strategy games like Go and backgam-

mon. A quick look at the Wikipedia pages for prominent venture capital-

ists and tech titans reveals that most of them were childhood Dungeons & 

Dragons enthusiasts.

Ever since Alan Turing’s 1950 paper that proposed the Turing test for 

machines that think, computer scientists have used chess as a marker for 

“intelligence” in machines. Half a century has been spent trying to make 

a machine that could beat a human chess master. Finally, IBM’s Deep Blue 

defeated chess champion Garry Kasparov in 1997. AlphaGo, the AI pro-

gram that won three of three games against Go world champion Ke Jie in 

2017, is often cited as an example of a program that proves general AI is 

just a few years in the future. Looking closely at the program and its cultural 

context reveals a different story, however.

AlphaGo is a human-constructed program running on top of hard-

ware, just like the “Hello, world” program you wrote in chapter two. Its 

developers explain how it works in a 2016 paper published in Nature, the 

international journal of science.1 The opening lines of the paper read: “All 

games of perfect information have an optimal value function, v*(s), which 

determines the outcome of the game, from every board position or state s, 

under perfect play by all players. These games may be solved by recursively 

computing the optimal value function in a search tree containing approxi-

mately bd possible sequences of moves, where b is the game’s breadth (num-

ber of legal moves per position) and d is its depth (game length).” This is 

perfectly clear to someone who has years of high-level mathematical train-

ing, but many of us would prefer a plainer-language explanation.
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34  Chapter 3

To understand AlphaGo, it helps to start by thinking about tic-tac-toe, 

a game that most children have mastered. If you go first in tic-tac-toe and 

choose the space in the middle of the nine-square grid, you can always play 

to a win or a draw. Going first gives you an advantage: you will have five 

moves to your opponent’s four. Most kids grasp this intuitively and insist 

on going first when playing with an indulgent older opponent.

It’s also relatively easy to write a computer program to play tic-tac-toe 

against a human opponent. The first one was written in 1952. There’s an 

algorithm, a set of rules or steps, that you can deploy so that the computer 

always plays to a win or a draw. Like “Hello, world,” building a tic-tac-toe 

game is a common exercise in introductory computing classes.

Go is far more sophisticated than tic-tac-toe, but it’s also a game played 

on a grid. Each Go player receives a pile of either black or white stones. 

Beginners play on a grid made of nine vertical and nine horizontal lines; 

advanced players use a nineteen-by-nineteen grid. Black goes first and 

places a black stone at an intersection of two lines. White then places her 

stone at a different intersection. The players alternate turns, with the goal 

of “capturing” the opponent’s stones by surrounding a stone with the 

opposite color.

People have been playing Go for three thousand years. Computer scien-

tists and Go aficionados have been studying patterns in the game since at 

least 1965. The first computerized Go program was written in 1968. There’s 

an entire subfield of computer science research devoted to Go, called 

(unsurprisingly) Computer Go.

For years, Computer Go players and researchers have been amassing 

records of games. A game record looks like this:

(;GM[1] 
FF[4] 
SZ[19] 
PW[Sadavir] 
WR[7d] 
PB[tzbk] 
BR[6d] 
DT[2017–05–01] 
PC[The KGS Go Server at http://www.gokgs.com/] 
KM[0.50] 
RE[B+Resign] 
RU[Japanese] 
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CA[UTF-8] 
ST[2] 
AP[CGoban:3] 
TM[300] 
OT[3x30 byo-yomi] 
;B[qd];W[dc];B[eq];W[pp];B[de];W[ce];B[dd];W[cd];B[ec];W[cc];B
[df];W[cg];B[kc];W[pg];B[pj];W[oe];B[oc];W[qm];B[of];W[pf];B[p
e];W[og];B[nf];W[ng];B[nj];W[lg];B[mf];W[lf];B[mg];W[mh];B[me]
;W[li];B[kh];W[lh];B[om];W[lk];B[qo];W[po];B[qn];W[pn];B[pm];W
[ql];B[rq];W[qq];B[rm];W[rl];B[rn];W[rj];B[qr];W[pr];B[rr];W[m
n];B[qi];W[rh];B[no];W[on];B[nn];W[nm];B[nl];W[mm];B[ol];W[mp]
;B[ml];W[ll];B[np];W[nq];B[mo];W[mq];B[lo];W[kn];B[ri];W[si];B
[qj];W[qk];B[kq];W[kp];B[ko];W[jp];B[lp];W[lq];B[jq];W[jo];B[j
n];W[in];B[lm];W[jm];B[ln];W[hq];B[qh];W[rg];B[nh];W[re];B[rd]
;W[qe];B[pd];W[le];B[md])

The text may look like gobbledygook to a human, but it’s highly struc-

tured so that a machine can process it easily. The structure is called smart 

games format (SGF). The text shows who played the game, where, what each 

of the moves were, and how the game was resolved.

The large text area shows all the moves. Columns in the Go grid are 

labeled in alphabetical order from left to right, and rows are labeled from 

top to bottom. In this game, Black (B) went first and placed a stone at the 

intersection of column q and row d. This is shown as ;B[qd]. Then, the text 

;W[dc] shows that White (W) placed a stone at the intersection of column 

d and column c. Each subsequent move is listed in this format. The resolu-

tion (RE) of the game is shown in the text RE[B+Resign], which means that 

Black resigned the game.

The AlphaGo designers amassed a massive dataset of thirty million SGF 

game files. The dataset wasn’t randomly generated; those thirty million 

games were actual games played by actual people (and some computers). 

Whenever amateurs or professionals played Go on one of many online 

sites, that data was saved. It’s not hard to create a Go video game; many 

versions of instructions and free code are posted online. All video games can 

save game data, of course. Some do; some don’t. Some save your game data 

and use it for creating reports for the game company. The people who ran 

various online Go sites decided to publish their saved game data online in 

huge batches. Eventually, these batches were pooled, resulting in the thirty 

million games collected by the AlphaGo team.
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36  Chapter 3

The programmers used the thirty million games to “train” the model 

that they named AlphaGo. What you must remember is that people who 

play Go professionally spend ages playing Computer Go. It’s how they 

train. Therefore, the thirty million games recorded included data from the 

world’s greatest Go players. Millions of hours of human labor went into 

creating the training data—yet most versions of the AlphaGo story focus 

on the magic of the algorithms, not the humans who invisibly and over the 

course of years worked (without compensation) to create the training data.

The developers programmed AlphaGo to use a method called Monte 

Carlo search to pick a set of moves from the thirty million games that would 

most likely lead to a win. Then, they instructed it to use an algorithm to 

select the next move from the set. They also instructed it to use a different 

algorithm that calculated the probability of a win for each possible move 

in the set. The calculations happened on a scale that the human mind can 

barely imagine. There are 10170 possible board configurations in Go. By lay-

ering a variety of computational methods and always choosing the move 

with the greatest probability of success, the designers created a program 

that defeated the world’s greatest Go players.

Is AlphaGo smart? Its designers certainly are. They solved a math prob-

lem that was so hard that it took decades of great minds to work on it. One 

of the amazing things about math is that it allows you to see underlying 

patterns in how the world works. Many, many things operate according to 

mathematical patterns: crystals grow in regular patterns, and cicadas hiber-

nate underground for years and emerge when soil temperature conditions 

are just right, to name just two. AlphaGo is a remarkable mathematical 

achievement that was made possible by equally remarkable advances in 

computing hardware and software. AlphaGo’s team of designers deserves 

praise for this outstanding technical achievement.

AlphaGo is not an intelligent machine, however. It has no conscious-

ness. It does only one thing: plays a computer game. It contains data from 

thirty million games played by amateurs and by the world’s most talented 

players. On some level, AlphaGo is supremely dumb. It uses brute force 

and the combined effort of many, many humans to defeat a single Go mas-

ter. The program and its underlying computational methods will likely be 

deployed for other useful tasks involving massive number-crunching, and 

that’s good for the world—but not everything in the world is a calculation.
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Once we get past the mathematical and physical reality of a program like 

AlphaGo, we’re in the realm of philosophy and future speculation. Those 

are very different intellectual landscapes. There are futurists who want 

AlphaGo to signify the beginning of an era in which people and machines 

become fused. Wanting something doesn’t make it true, however.

Philosophically, there are lots of interesting questions to discuss center-

ing on the difference between calculation and consciousness. Most people 

are familiar with the Turing test. Despite what the name suggests, the Tur-

ing test is not a quiz that a computer can pass to be considered intelli-

gent. In his paper, Turing proposed a thought experiment about talking 

to a machine. He rejected the question “Can machines think?” as absurd 

and claimed it was best answered by an opinion poll. (Turing was a bit of a 

snob about math. Like many mathematicians then and a smaller number 

now, he believed in the superiority of mathematics to other intellectual 

pursuits.) Instead, Turing proposed an “imitation game” played by a man 

(A), a woman (B), and an interrogator (C). C sits in a room alone and sub-

mits typewritten queries to A and B. Turing writes: “The object of the game 

for the interrogator is to determine which of the other two is the man and 

which is the woman. He knows them by labels X and Y, and at the end of 

the game he says either ‘X is A and Y is B’ or ‘X is B and Y is A.’”2

Turing then breaks down the kind of kind of questions the interrogator is 

allowed to ask. One is about hair length. A, the man, wants the interrogator 

to make the wrong assumptions and is willing to lie. B, the woman, wants 

to help the interrogator and can tell him or her that she is the woman—but 

A can lie and say that as well. Their answers are written down, so that the 

quality and tone of voice cannot provide clues. Turing writes: “We now ask 

the question, ‘What will happen when a machine takes the part of A in 

this game?’ Will the interrogator decide wrongly as often when the game is 

played like this as he does when the game is played between a man and a 

woman? These questions replace our original, ‘Can machines think?’”

If the questioner can’t tell the difference between a response provided by 

a human or the response provided by a machine, the computer is said to be 

thinking. For many years, this was considered foundational in computing. 

A vast amount of ink has been spilled trying to respond to Turing’s ideas in 

this paper and to make a machine that can perform to Turing’s specifica-

tions. However, undergirding the entire thought experiment is a philosoph-

ical and cultural misnomer that throws the entirety into question, and that 
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38  Chapter 3

is gender. Turing’s specifications do not conform to what we now under-

stand about gender. Gender is not a binary, but a continuum. Hair length 

is no longer a signifier of male or female identity; anyone can rock a short 

haircut. Moreover, as Turing writes, “The object of the game for the third 

player (B) is to help the interrogator.” A game to determine “intelligence,” 

in which the woman is assigned to be the helper? And the man is told that 

he can lie? The underpinnings are absurd, from a critical perspective, in 

that both the man and woman are given gender-coded physical and moral 

attributes.

The philosophical underpinnings of Turing’s argument are unsound. 

One of the most compelling counterarguments was addressed by the phi-

losopher John Searle in an argument known as the Chinese Room. Searle 

summarized it in a 1989 piece in the New York Review of Books:

A digital computer is a device which manipulates symbols, without any refer-

ence to their meaning or interpretation. Human beings, on the other hand, when 

they think, do something much more than that. A human mind has meaningful 

thoughts, feelings, and mental contents generally. Formal symbols by themselves 

can never be enough for mental contents, because the symbols, by definition, have 

no meaning (or interpretation, or semantics) except insofar as someone outside the 

system gives it to them.

You can see this point by imagining a monolingual English speaker who is locked 

in a room with a rule book for manipulating Chinese symbols according to computer 

rules. In principle he can pass the Turing test for understanding Chinese, because 

he can produce correct Chinese symbols in response to Chinese questions. But he 

does not understand a word of Chinese, because he does not know what any of the 

symbols mean. But if he does not understand Chinese solely by virtue of running 

the computer program for “understanding” Chinese, then neither does any other 

digital computer because no computer just by running the program has anything 

the man does not have.3

Searle’s argument that symbolic manipulation is not equivalent to under-

standing can be seen in the popularity of voice interfaces in 2017. “Conver-

sational” interfaces are popular, but they are far from intelligent.

Amazon’s Alexa and other voice-response interfaces don’t understand 

language. They simply launch computerized sequences in response to sonic 

sequences, which humans call verbal commands. “Alexa, play ‘California 

Girls’” is a voice command that a computer can follow. Alexa is the trigger 

word that tells the computer that a command is coming. Play is a trigger 

word that means “retrieve an MP3 from memory and send the command 
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Hello, AI  39

play to a previously specified audio player, along with the MP3 file name.” 

The interface is also programmed to capture whatever word comes after 

play and before the pause (the end of the command). That value is put into 

a variable such as songname, which is retrieved from memory and fed to the 

audio player. This process is procedural and unthreatening and shouldn’t 

make anyone think that the machines are going to rise up and take over 

the world. Right now, a computer can’t reliably distinguish whether it 

should respond to the previous command by playing Katy Perry’s “Califor-

nia Gurls” or the Beach Boys’ “California Girls.” In fact, this exact problem 

is solved by running a popularity contest. Whichever song is played more 

often by all Alexa users is assumed to be the default choice. This is good for 

Katy Perry fans, but not so good for Beach Boys fans.

I’m going to ask you to keep the two competing ideas about narrow and 

general AI, and the idea of limitations, in your mind as you read. In this 

book, we’ll stay squarely in the realm of reality: the world in which we 

have unintelligent computing machines that we call intelligent machines. 

However, we’ll also look at how imagination—which is powerful and won-

derful and exciting—sometimes confuses the way we talk about computers, 

data, and technology. I’d also ask you not to be disappointed like the art 

student at the science fair when you come up against what a colleague calls 

the ghost-in-the-machine fallacy—the reality that there is no little person or 

simulated brain inside the computer. There are different ways to react to 

this news: you can be sad that the thing you dreamed of is not possible—or 

you can be excited and embrace what is possible when artificial devices 

(computers) work in sync with truly intelligent beings (humans). I prefer 

the latter approach.
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