To get the full value of joy you must have someone to divide it with.

- Mark Twain

Things you'd like me to review

- Two (laser) colors beating together
- The series of questions on both example midterms regarding the laser/mirror configuration
- Basic diffraction and interference
- Use of marine chronometers/early navigation
 - Trains and time zones+
- Light clocks

USING A MARINE CHRONOMETER

Local time & longitude

- Until recently, 'time' meant local time
- Depending on where you are eastwest, stars, sun, & planets will appear at different angles above the horizon
- 'Angle above horizon' (east-west) is a synonym for 'local time'
- Need either concurrent observations, or to know what time it is somewhere else

The full process

Observing stars to measure local time

Time ball to tell ships the time

Finding local time (angle above horizon of stars or sun)

John Harrison & Longitude

USING A MARINE CHRONOMETER

Young's double slit

Relativity and light clocks

Light clock (student A homework)

Light clock (student B homework)

Takeaways

- Everyone see's their clock (time) as normal
- Everyone else's clock is running slow (if there is relative motion)
- They're <u>both</u> right

What time is it?

- Prior to ~1850 time meant local time
- 1850-1918 transition
- 1918+ timezones are firmly established, time now means a universal time (with timezones), set by local time in Greenwich London
- · 1960, atomic time more accurate than earth's spin
- 1970+

Bristol Corn Exchange Clock

- Bristol time (main red minute hand)
- Greenwich mean time added (pink)
- 11 minute difference (approx)

What time is it?

- Prior to ~1850 time meant local time
- 1850-1918 transition
- 1918+ timezones are firmly established, time now means a universal time (with timezones), set by local time in Greenwich London
- · 1960, atomic time more accurate than earth's spin
- 1970+

What time is it?

- International Atomic Time (TAI)
- Universal Time (UT1)
- UTC (Coordinated Universal Time)

International Atomic Time (TAI)

Is determined using atomic clocks

Length of Day - 86400 s [milliseconds]

- Is very accurate
- The time of noon wanders

UT1

- Is the rotation of the Earth
- The Earth's rotation speeds up and slows down
- Time of a second wanders

Organization

Data / Products / Tools

Mission:

Publications

Science background

News / Meetings

The IERS Rapid Service/Prediction Centre is responsible for providing earth

final series published by the IERS Earth Orientation Center.

orientation parameters on a rapid turnaround basis, primarily for real-time users and

others needing the highest quality EOP information sooner than that available in the

Links

About IERS

Directing Board

Analysis Coordinator

Product Centres

Earth Orientation Centre

Rapid Service / Prediction Centre

Conventions Centre

ICRS Centre

ITRS Centre

Global Geophysical Fluids Centre

Technique Centres

Central Bureau

ITRS Combination Centres

Working groups

Workshops

IERS > Organization > Product Centres > Rapid Service / Prediction Centre

IERS Rapid Service/Prediction Centre

Web site:

http://usno.navy.mil/USNO/earth-orientation

Main products: Rapid data and predictions:

BULLETIN A

Standard EOP data files:

FINALS.ALL (IAU1980) FINALS.ALL (IAU2000) FINALS.DATA (IAU1980) FINALS.DATA (IAU2000)

GPSRAPID.OUT

Daily EOP data files:

FINALS.DAILY (IAU1980) FINALS.DAILY (IAU2000)

GPSRAPID.DAILY

Primary scientist and representative to the IERS Directing Board: Christine Hackman

Production director and lead project scientist: Nick Stamatakos

Coordinated Universal Time (UTC)

- Most common time
- The second is given by atomic time
- Leap seconds are occasionally inserted to keep noon from being more than a second off
- Pro: lines up more or less with both atomic and celestial time
- Used for almost all common usages of time
- Not actually useful for precision work

Optical clocks

Counting very fast (~100 trillion times per second)

Many fancy lasers

Optical Frequency Comb

Optical Frequency Comb

Optical clock

