To get the full value of joy you must have someone to divide it with.

- Mark Twain

Midterm review

Things you'd like me to review

- Two (laser) colors beating together
- The series of questions on both example midterms regarding the laser/mirror configuration
- Basic diffraction and interference
- Use of marine chronometers/early navigation
- Trains and time zones+
- Light clocks

No. of photons $=0$
Vertical cross section

https://doi.org/10.1119/1.4955173

Using a Marine Chronometer

Local time \& longitude

- Until recently, 'time' meant local time
- Depending on where you are eastwest, stars, sun, \& planets will appear at different angles above the horizon
- 'Angle above horizon’ (east-west) is a synonym for 'local time'
- Need either concurrent observations, or to know what time it is somewhere else

The full process

Observing stars to measure local time

Time ball to tell ships the time

Finding local time (angle above horizon of stars or sun)

John Harrison \& Longitude

H1

Using a Marine Chronometer

Charlie Loyd
Himawari-8

Young's double slit

Relativity and light clocks

Light clock (student A homework)

Light clock (student B homework)

tick, tick, tick,

Takeaways

- Everyone see's their clock (time) as normal
- Everyone else's clock is running slow (if there is relative motion)
- They're both right

What time is it?

- Prior to ~1850 time meant local time
- 1850-1918 transition
- 1918+ timezones are firmly established, time now means a universal time (with timezones), set by local time in Greenwich London
- 1960, atomic time more accurate than earth's spin
- 1970+

Bristol Corn Exchange Clock

- Bristol time (main red minute hand)
- Greenwich mean time added (pink)
- 11 minute difference (approx)

What time is it?

- Prior to ~1850 time meant local time
- 1850-1918 transition
- 1918+ timezones are firmly established, time now means a universal time (with timezones), set by local time in Greenwich London
- 1960, atomic time more accurate than earth's spin
- 1970+

What time is it?

- International Atomic Time (TAI)
- Universal Time (UT1)
- UTC (Coordinated Universal Time)

International Atomic Time (TAI)

- Is determined using atomic clocks
- Is very accurate
- The time of noon wanders

UT1

- Is the rotation of the Earth
- The Earth's rotation speeds up and slows down
- Time of a second wanders

Internetfonal Earth Rotation and Reference Systems Service

Coordinated Universal Time (UTC)

- Most common time
- The second is given by atomic time
- Leap seconds are occasionally inserted to keep noon from being more than a second off
- Pro: lines up more or less with both atomic and celestial time
- Used for almost all common usages of time
- Not actually useful for precision work

Optical clocks

Counting very fast (~ 100 trillion times per second)

Many fancy lasers

Optical Frequency Comb

Optical Frequency Comb

Abstract

 н** ******* * *** $* *+*$ $* *-$ *** $* *$ \square

Optical clock

