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The purpose of this paper is to graphically illustrate the parametric relationships between pairs of 35 univariate distribution families.
The families are organized into a seven-by-five matrix and the relationships are illustrated by connecting related families with arrows.
A simplified matrix, showing only 25 families, is designed for student use. These relationships provide rapid access to information
that must otherwise be found from a time-consuming search of a large number of sources. Students, teachers, and practitioners who
model random processes will find the relationships in this article useful and insightful.

1. Introduction

An understanding of probability concepts is necessary
if one is to gain insights into systems that can be
modeled as random processes. From an applications
point of view, univariate probability distributions pro-
vide an important foundation in probability theory since
they are the underpinnings of the most-used models in
practice.

Univariate distributions are taught in most probability
and statistics courses in schools of business, engineering,
and science. A figure illustrating the relationships among
univariate distributions is useful to indicate how distributi-
ons correspond to one another. Nakagawa and Yoda
(1977), Leemis (1986), and Kotz and van Dorp (2004) of-
fer diagrams of relations among univariate distributions,
but their diagrams are not formatted in a matrix form,
so it is difficult for the instructor to refer to any partic-
ular distribution from the diagram, and it might be dif-
ficult for users to find the required distribution quickly.
Two versions of the figure presented in this article over-
come this shortcoming. Figure 1 is the complete figure with
35 univariate distributions, whereas Fig. 2 is a simpler ver-
sion with 25 distributions designed for more elementary
needs.

Some useful references for studying univariate distribu-
tions can be found in Patil, Boswell, Joshi, and Ratnaparkhi
(1985), Patil, Boswell, and Ratnaparkhi (1985), Stigler
(1986), Hald (1990), Johnson et al. (1993, 1994, 1995),
Stuart and Ord (1994), Wimmer and Altmann (1999),
Evans, Hastings and Peacock (2000), and Balakrishnan
and Nevzorov (2003). These books individually do not
provide all of the simple relationships shown in this
article.

2. A seven-by-five matrix

Figure 1 illustrates 35 univariate distributions in 35
rectangle-like entries. The row and column numbers are
labeled on the left and top of Fig. 1, respectively. There are
10 discrete distributions, shown in the first two rows, and
25 continuous distributions. Five commonly used sampling
distributions are listed in the third row. For example, the
Normal distribution is indexed as R3C1, which indicates
Row 3 and Column 1. The range, probability mass (density)
function, mean, and variance for discrete and continuous
distributions are summarized in Tables 1 and 2, respectively.
Distributions are ordered alphabetically in Tables 1 and 2.
According to the index number shown in the second col-
umn of Tables 1 and 2, users can easily find the distribution
required in Fig. 1.

In Fig. 1, the distribution name, parameters and range
are shown in each entry. The parameters adopted satisfy the
following conventions: n and k are integers; 0 ≤ p ≤ 1; a is
the minimum; b is the maximum; µ is the expected value;
m is either the median or mode; σ is the standard devi-
ation; θ is the location parameter; β and γ are scale pa-
rameters; α, α1, α2 are shape parameters; and υ, υ1, υ2 are
degrees of freedom. We do not always use α to denote the
shape parameter. For example, the parameter m (denoted
as the mode) in the Triangular (a, m, b); the parameter k
(denoted as an integer) in the Erlang (k, β); υ (denoted as
the degrees of freedom) in the Chi-Squared (υ); and υ1, υ2
(both denoted as the degrees of freedom) in the F(υ1, υ2)
are shape parameters.

Relations between entries are indicated with a dashed
arrow or solid arrow. A dashed arrow shows asymptotic re-
lations, and a solid arrow shows transformations or special
cases. The random variable X is used for all distributions.
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652 Song

Fig. 1. Relationships among 35 distributions. (An arrow beginning and ending at the same rectangle indicates that it remains in the
same distribution family, but the parameter values might change.)

For example, the arrow from the Normal (R3C1) to the
Standard Normal (R3C2) indicates that subtracting the
mean from a Normal and dividing by its standard devi-
ation yields a Standard Normal distribution.

In Fig. 1, if more than one random variable is involved
to form a transformation, the relationship between these
random variables is denoted by “iid” (independent and
identically distributed), “indep” (independent), or “k-dim
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Table 1. Discrete distributions

Distribution Index Probability Expected
name no. Range mass function value Variance

Bernoulli (p) R1C3 x = 0, 1 px(1 − p)1−x p p(1 − p)
Binomial (n, p) R2C3 x = 0, 1, . . . , n Cn

xpx(1 − p)n−x np np(1 − p)
Discrete R1C5 x = x1, x2, . . . , xn 1/n

∑n
i=1 xi/n

∑n
i=1 x2

i /n−(
∑n

i=1 xi/n)2

Uniform (x1, . . . , xn)
Equal-Spaced R2C5 x = a, a + c, 1/n (a + b)/2 c2(n2 − 1)/12

Uniform (a, b, c) a + 2c, . . . , b where n = 1 + b−a
c

Geometric (trials) (p) R2C1 x = 1, 2, . . . p(1 − p)x−1 1/p (1 − p)/p2

Hyper-Geometric (N, K, n) R1C2 x = max{n − N + K, 0},
. . . , min{K, n}

CK
x CN−K

n−x /CN
n np np(1 − p)( N−n

N−1 )
where p = K/N

Negative Binomial (k, p) R2C2 x = k, k + 1, . . . Cx−1
k−1 pk(1 − p)x−k k/p k(1 − p)/p2

Negative R1C1 x = k, . . . ,
CK

k−1CN−K
x−k

CN
x−1

K−k+1
N−x+1

k(N+1)
K+1

k(N+1)(N−K)
(K+1)2(K+2) (K + 1 − k)

Hyper-Geometric (N, K, k) N − K + k
Poisson (µ) R2C4 x = 0, 1, 2, . . . µx exp(−µ)/x! µ µ

Polya (n, p, β) R1C4 x = 0, 1, 2, . . . , n Cn
x
∏x−1

j=0 (p + jβ)

· ∏n−x−1
k=0 (1 − p + kβ)

· [
∏n−1

i=0 (1 + iβ)]−1

np np(1−p)(1+nβ)
1+β

Note: Cn
m = n!/[m!(n − m)!].

Fig. 2. Relationships among 25 distributions.
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Table 2. Continuous distributions

Index Probability Expected
Distribution name no. Range density function value Variance

Arc-Sine R4C5 [0,1] [π
√

x(1 − x)]−1 1/2 1/8

Beta (α1, α2) R5C4 [0,1] �(α1+α2)xα1−1(1−x)α2−1

�(α1)�(α2)
α1

α1+α2

α1α2
(α1+α2)2(α1+α2+1)

Cauchy (θ, β) R4C4 R {βπ [1 + ( x−θ
β

)2]}−1 NA NA

Chi-Squared (υ) R3C5 R
+ x

υ
2 −1e−x/2

�(υ/2)2υ/2 υ 2υ

Erlang (k, β) R6C3 R
+ xk−1 exp(−x/β)

βk (k−1)! kβ kβ2

Exponential (β) R6C2 R
+ β−1 exp(−x/β) β β2

Extreme Value (θ, γ ) R4C1 R γ −1 exp[−(x − θ )/γ ]
· exp{− exp[−(x − θ )/γ ]}

θ + 0.57722γ γ 2π2/6

F(υ1, υ2) R3C4 R
+ �( υ1+υ2

2 )(υ1/υ2)υ1/2

�(υ1/2)�(υ2/2)
x(υ1/2)−1

(1+υ1υ
−1
2 x)(υ1+υ2)/2

υ2
υ2−2 , v2 > 2 2υ2

2 (υ1+υ2−2)
υ1(υ2−2)2(υ2−4) , v2 > 4

Gamma (α, β) R5C3 R
+ (x/β)α−1exp(−x/β)

β�(α) αβ αβ2

Generalized Gamma R5C2 R
+ α2

�(α1)β ( x
β

)α1α2−1 exp[−( x
β

)α2 ]
β�( 1

α2
+α1)

�(α1) β2{�( 2
α2

+α1)

�(α1) − �2( 1
α2

+α1)

�2(α1) }
(α1, α2, β)

Laplace (µ, β) R7C1 R (2β)−1 exp(−|x − µ|/β) µ 2β2

Logistic (µ, β) R7C2 R
exp[−(x−µ)/β]

β{1+exp[−(x−µ)/β]}2 µ π2β2/3

Loglogistic (α1, α2) R7C4 R
+ α2 exp(−α1)x−α2−1

[1+exp(−α1)x−α2 ]2 δ exp(−η)csc(δ) δ[exp(−2η)]
· [tan(δ) − δ]csc2(δ)

where δ = π
α2

, η = α1
α2

Lognormal (m, α) R4C2 R
+ (xα

√
2π )−1 exp[− 1

2 ( ln(x/m)
α

)2] m exp(α2/2) m2 exp(α2)
· [exp(α2) − 1]

Normal (µ, σ 2) R3C1 R
exp[(−1/2)( x−µ

σ
)2]√

2πσ
µ σ 2

Pareto (θ, α) R7C5 [θ, ∞) αθα/xα+1 αθ
α−1 , α > 1 αθ2

(α−1)2(α−2) , α > 2

Rayleigh (β) R6C1 R
+ (2x/β2) exp[−(x/β)2] β

√
π/2 β2 − ( β

√
π

2 )2

Rectangular (a, b) R6C5 [a, b] (b − a)−1 (a + b)/2 (b − a)2/12
Standard Cauchy

(θ = 0, β = 1)
R4C3 R [π (1 + x2)]−1 NA NA

Standard Logistic
(µ = 0, β = 1)

R7C3 R
exp(−x)

[1+exp(−x)]2 0 π2/3

Standard Normal
(µ = 0, σ = 1)

R3C2 R
1√
2π

exp(−x2/2) 0 1

Standard Uniform
(a = 0, b = 1)

R6C4 [0,1] 1 1/2 1/12

T(υ) R3C3 R
�[(υ+1)/2]
�(υ/2)

√
πυ

(1 + x2

υ
)−(υ+1)/2 0, υ > 1 υ

υ−2 , υ > 2

Triangular (a, m, b) R5C5 [a, b]

{
2(x−a)

(m−a)(b−a) , a ≤ x ≤ m
2(b−x)

(b−a)(b−m) , m < x ≤ b
1
3 (a + m + b) 1

18 {a2 + m2 + b2

− (am + ab + mb)}
Weibull (α, β) R5C1 R

+ αβ−αxα−1 exp[−(x/β)α] β�(1 + 1
α

) β2�(1 + 2
α

)
− [β�(1 + 1

α
)]2

Note: R
+ denotes [0, ∞) and R denotes (−∞, ∞). NA denotes “not applicable.”

normal” (k-dimensional Normal Distribution). For exam-
ple, the relation from the Geometric (R2C1) to the Negative
Binomial (R2C2) is marked “

∑k
i=1 Xi, iid,” which indicates

that the sum of k iid Geometric random variables yields
a Negative Binomial distribution. The relation from Chi-
Squared (R3C5) back to the Chi-Squared is marked “

∑
Xi,

indep,” which indicates that the sum of independent Chi-
Squared random variables yields a Chi-Squared distribu-
tion. The relation from the Normal (R2C1) to the Normal is
marked “

∑k
i=1 Xi, k-dim normal,” which indicates that the

sum of k random variables has a Normal distribution if they
are components of a k-dimensional Normal distribution.
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The multivariate Normal is discussed in many places, in-
cluding Johnson et al. (1997), Johnson and Wichern (1998),
and Kotz et al. (2000).

The transformation relationships in Fig. 1 can be
combined to form other relationships. For instance, a
path from the Standard Normal (R3C2) to the Chi-
Squared (R3C5) to the Gamma (R5C3) to the Ex-
ponential (R6C2) indicates that the random variable
X2

1 + X2
2 has the Exponential (β = 2) distribution if

X1 and X2 are independent Standard Normal random
variables.

There is a special relationship between the Standard Uni-
form (R6C4) and any continuous distribution. That is,
FX (X) ∼ Uniform(0, 1), where FX is the cumulative distri-
bution function (cdf) of any continuous random variable
X . Therefore, an arrow with the relation FX (X) could be
drawn from any continuous distribution to the Standard
Uniform, and an arrow with the relation F−1

X (U) (where
U ∼ Uniform (0,1)) could be drawn from the Standard Uni-
form to any continuous distribution where the random vari-
able F−1

X (U) is known as the transformation of inverse-cdf,
which is a popular random variate generation technique.
Random variate generation is discussed in many places,
including Schmeiser (1980), Devroye (1986) and Gentle
(2003).

Let us continue the discussion of the relationship be-
tween the Standard Uniform and any continuous distri-
bution. We do not draw arrows connecting the Standard
Uniform U with all continuous distributions X in Fig. 1
because that would render the diagram unnecessarily dif-
ficult to read. In Fig. 1, we simply draw arrows from the
Standard Uniform to certain continuous distributions. For
example, we show the arrows from the Standard Uni-
form to the Exponential distribution (R6C2), Rectangle
(R6C5), Loglogistic (R7C4), Logistic (R7C2), and Pareto
(R7C5). The relations from the Standard Uniform to some
other continuous distributions, including the Triangular
(R5C5), Standard Logistic (R7C4), and Rayleigh (R6C1),
such that the closed-form inverse cdf exists, are not shown
in Fig. 1 because of space limitations. These relations can
be easily derived via the combined paths, as discussed
earlier.

We mark some entries to show the relationship between
the corresponding discrete and continuous distributions.
To indicate that the Geometric distribution (R2C1) corre-
sponds to the Exponential distribution (R6C2), we mark a
circle in the bottom of these two entries. To indicate that the
Negative Binomial distribution (R2C2) corresponds to the
Erlang (R6C3), we mark two circles in the bottom of these
two entries. To indicate that the Equal-Spaced Uniform
(R2C5) corresponds to the Continuous Uniform (R6C5),
we mark a rectangle in the bottom of these two entries.

One final comment is that the Logistic, Standard Logis-
tic, and Loglogistic are analogous to the Normal, Standard
Normal, and Lognormal, respectively. See Balakrishnan
(1992, p. 190) for a detailed explanation.

3. A simplified matrix

Figure 2 is a simpler version of Fig. 1, not including the
Negative Hypergeometric (R1C1), Polya (R1C4), Extreme
Value (R4C1), Standard Cauchy (R4C3), Cauchy (R4C4),
Arc-Sine (R4C5), Generalized Gamma (R5C2), and the five
distributions in Row 7. In a probability introductory course,
we have found that students are motivated to learn the trans-
formation of random variables and uses of the moment
generating functions, so that they can derive all 44 relations
in Fig. 2. Discussions on the transformation of random
variables and moment generating functions are typically
optional in standard probability and statistics texts, such
as Walpole et al. (2002). To be able to prove all relations
in Fig. 1, some additional mathematical background is
required.

We add two distributions in the first row of Fig. 2: the
Geometric (failures) distributions and the Standard Dis-
crete Uniform (with range 1, 2, . . . , n), which is a special
case of the Equal-Spaced Uniform. The Geometric (fail-
ures) random variable is the total number of failures before
the first success occurs. The Geometric (R2C1) in Fig. 1
now becomes Geometric (trials) in which the random vari-
able indicates the number of trials needed until the first suc-
cess occurs. To avoid confusion with index numbers used in
Tables 1 and 2, we do not list row and column numbers in
Fig. 2.
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