Modern Analysis Techniques for Large Data Sets

Miguel F. Morales
Bryna Hazelton

Graduate elective

- You get out what you put in
- Homework (first ~7 weeks; 40\%; 100\%; + options)
- Final project \& presentation based on your research
- No exams
- Fill in quiz describing what you'd like to get out of the course

Key topics

- Advanced practices
- Jackknife tests, metadata, testing below the noise
- Analysis plans: statistical worries, git issues, testing framework
- Machine learning, blind analyses, data rampages

Statistics

Visibility Difference Histogram, Long Run, 8s/Autos Removed

100 billion data points

$K_{\perp}, v \cdots r$

git \& analysis traceability

Data unit tests

Final project

- Pick some aspect of your research you'd like to improve
- Statistical or systematic improvement
- Code organization \& collaboration
- Visualization for science
$\mathrm{BaFe}_{2} \mathrm{As}_{2}$ - Iron Based High Temperature Superconductor

Shua Sanchez, Prof. Jiun-Haw Chu's Quantum Materials group

- Project goal: apply strains and x-ray to precisely detwin a sample and strain-tune superconductivity.
- This crystal has 2 structural domains (A and B) where iron atoms form rectangular lattice.
- Under zero stress, the A and B domains have the same total volume (domain population). Applying tension detwins the crystal to turn B domains into A , and compression to A to B .

- We combined x-rays to measure the a and b lattice constants directly while applying strain.
- The video shows 162 strain states sequentially and the intensity of the x-ray diffraction on the area detector

- (Top plot) the intensity position on the detector gives the length values of a and b which change with strain
- (Middle plot) the intensity is summed vertically and fit to 2 Gaussians
- (Bottom plot) The relative intensity $\frac{I_{A}}{I_{A}+I_{B}}$ gives the relative A domain population which change vs strain.

Interesting result!
Lattice constants freeze in place during detwinning!

Implies that the domain pinning is much softer than the crystal lattice

Can smoothly detwin the sample from B to A and back

Introductions

- Name
- Year
- Science
-What are you working on specifically?
- Familiarity with git/GitHub/source control?
-What language(s) do you use for data analysis?
- What do you want to get out of this class?

Thinking about statistics

What is significance anyway?

What is the question?

- Must clearly \& precisely state the question

Example (null hypothesis):
If there is no signal; what is the probability that the background produces a signal that is equally or more signal-like than what I observed?
data $=$ stats. norm. $\mathrm{rvs}(\mathrm{loc}=5 .$, scale $=0.01$, size $=100000)$

$$
d=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

fig, $\mathrm{ax}=\mathrm{plt}$.subplots(1, 1)
ax.hist(data,50, density=True)
plt.yscale('log')
plt.tick_params(labelsize $=24$)

$$
\log d=\frac{-(x-\mu)^{2}}{2 \sigma^{2}}+c
$$

plt.xlim([4.95,5.05])
$x=n p$.linspace $(4.95,5.05,1000)$
ax. plot $(x$, stats.norm. $\operatorname{pdf}(x, \operatorname{loc}=5 .$, scale $=0.01)$, linewidth $=8$, alpha $=0.7)$
plt.show()

Never assume Gaussian statistics

Never assume Gaussian statistics

If there is no signal; what is the probability that the background produces a signal that is equally or more signallike than what I observed?

${ }^{\prime}$ Probability ${ }^{\prime}=\int_{a}^{\infty} \operatorname{pdf}(x) d x \quad$ in this case!

In physics, $X \sigma$ is shorthand for a probability

- 5σ means: the probability of signal-free data giving a measurement that is equally or more signal like than your observation is less than 2.87×10^{-7} (or 1 in 3.5 million)

Common mistakes

- X σ does not imply Gaussian distributed data
- $X \sigma$ is not $X \sigma$ away from the mean
- X σ does not mean your question is one-sided

Best interpretation of $X \sigma$ (null hypothesis case)

- The probability of the background giving me a data point that looks as or more signal-like than the reading I have is the same probability as if my data was Gaussian and I was $X \sigma$ away from the mean

Standard normal or unit variance Gaussian distribution

Probability $\mathrm{X} \sigma=\int_{\mathrm{X} \sigma}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\frac{-(\mathrm{x}-0)^{2}}{2(1)^{2}}} \mathrm{dx}=\frac{1}{2} \operatorname{erfc}\left(\frac{\mathrm{X}}{\sqrt{2}}\right)$

Best interpretation of $X \sigma$ (null hypothesis case)

- The probability of the background giving me a data point that looks as or more signal-like than the reading I have is the same probability as if my data was Gaussian and I was $X \sigma$ away from the mean

Key statistical steps

- Clearly state the question (\& turn into math)
- Determine the background distribution
- Integrate background to find probability
- Convert probability into equivalent sigma

$$
{ }^{\prime} \text { Probability' }=\int_{\mathrm{a}}^{\infty} \operatorname{pdf}(\mathrm{x}) \mathrm{dx}
$$

Analysis chains

How do you know the analysis is right?

How distributions change

Convolution \& the central limit theorem

Example: power of random electric field

$$
I=\left\langle E^{\dagger} E\right\rangle_{t}
$$

Average (or sum) is convolution of pdfs

Convolutions

$$
(f \star g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Brian Amberg

pdf of sums \& averages

- pdf of a sum is given by the convolution of the two pdfs
- average is a sum with the horizontal axis rescaled
- calculate sum pdf, rescale axis to get average pdf

