Modern Analysis Techniques for Large Data Sets

Miguel F. Morales Bryna Hazelton

Graduate elective

- You get out what you put in
 - Homework (first ~7 weeks; 40%; 100%; + options)
 - Final project & presentation based on your research
 - No exams
- Fill in quiz describing what you'd like to get out of the course

Key topics

Practical statistics

- Turning research questions into statistical math
- Systematics, non-Gaussianity, covariance, avoiding common mistakes
- Advanced data visualization
 - High quality visualizations (data density, perception, accessibility)
 - Statistically rigorous visualization
- Collaborative data analysis
 - Using GitHub to your advantage (branching, provenance)
 - Collaborative development
 - Peer reviewed code
- Advanced practices
 - · Jackknife tests, metadata, testing below the noise
 - Analysis plans: statistical worries, git issues, testing framework
 - Machine learning, blind analyses, data rampages

Statistics

100 billion data points

git & analysis traceability

Data unit tests

2	fhd_	core/fhd_struct_init_antenna.pro	View	
∑ ‡ Z		@@ -86,7 +86,7 @@ dec_use=dec_arr[valid_i]		
86	86			
87	87	;NOTE: Eq2Hor REQUIRES Jdate to have the same number of elements as RA and Dec for precession!!		
88	88	;;NOTE: The NEW Eq2Hor REQUIRES Jdate to be a scalar! They created a new bug when they fixed the old one		
89		-Eq2Hor,ra_use,dec_use,Jdate,alt_arr1,az_arr1,lat=obs.lat,lon=obs.lon,alt=obs.alt,precess=1		
	89	+Eq2Hor,ra_use,dec_use,Jdate,alt_arr1,az_arr1,lat=obs.lat,lon=obs.lon,alt=obs.alt,precess=1 <mark>,/nutate</mark>		
90	90	za_arr=fltarr(psf_image_dim,psf_image_dim)+90. & za_arr[valid_i]=90alt_arr1		
91	91	az_arr=fltarr(psf_image_dim,psf_image_dim) & az_arr[valid_i]=az_arr1		
92	92			
\$				

Final project

- Pick some aspect of your research you'd like to improve
 - Statistical or systematic improvement
 - Code organization & collaboration
 - Visualization for science

BaFe₂As₂ – Iron Based High Temperature Superconductor

Shua Sanchez, Prof. Jiun-Haw Chu's Quantum Materials group

- Project goal: apply strains and x-ray to precisely detwin a sample and strain-tune superconductivity.
- This crystal has 2 structural domains (A and B) where iron atoms form rectangular lattice.
- Under zero stress, the A and B domains have the same total volume (domain population).
 Applying tension detwins the crystal to turn B domains into A, and compression to A to B.
- We combined x-rays to measure the *a* and *b* lattice constants directly while applying strain.
- The video shows 162 strain states sequentially and the intensity of the x-ray diffraction on the area detector

- (Top plot) the intensity position on the detector gives the length values of *a* and *b* which change with strain
- (Middle plot) the intensity is summed vertically and fit to 2 Gaussians

(Bottom plot) The relative intensity $\frac{I_A}{I_A + I_B}$ gives the relative A domain population which change vs strain.

•

Interesting result! Lattice constants freeze in place during detwinning!

Implies that the domain pinning is much softer than the crystal lattice

Can smoothly detwin the sample from B to A and back

Introductions

- Name
- Year
- Science
- What are you working on specifically?
- Familiarity with git/GitHub/source control?
- What language(s) do you use for data analysis?
- What do you want to get out of this class?

Thinking about statistics

What is significance anyway?

What is the question?

Must clearly & precisely state the question

Example (null hypothesis):

If there is no signal; what is the probability that the background produces a signal that is equally or more signal-like than what I observed?

data = stats.norm.rvs(loc = 5., scale = 0.01, size = 100000)

Never assume Gaussian statistics

Never assume Gaussian statistics

If there is no signal; what is the probability that the background produces a signal that is equally or more signallike than what I observed?

'Probability' = $\int_{a}^{\infty} pdf(x)dx$ in this case!

In physics, $X\sigma$ is shorthand for a probability

• 5 σ means: the probability of signal-free data giving a measurement that is equally or more signal like than your observation is less than 2.87×10^{-7} (or 1 in 3.5 million)

Common mistakes

- $X\sigma$ does not imply Gaussian distributed data
- $X\sigma$ is not $X\sigma$ away from the mean
- $X\sigma$ does not mean your question is one-sided

Best interpretation of $X\sigma$ (null hypothesis case)

• The probability of the background giving me a data point that looks as or more signal-like than the reading I have is the same probability as if my data was Gaussian and I was $X\sigma$ away from the mean

Standard normal or unit variance Gaussian distribution

Probability
$$X\sigma = \int_{X\sigma}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-0)^2}{2(1)^2}} dx = \frac{1}{2} \operatorname{erfc}\left(\frac{X}{\sqrt{2}}\right)$$

Best interpretation of $X\sigma$ (null hypothesis case)

• The probability of the background giving me a data point that looks as or more signal-like than the reading I have is the same probability as if my data was Gaussian and I was $X\sigma$ away from the mean

Key statistical steps

- Clearly state the question (& turn into math)
- Determine the background distribution
- Integrate background to find probability
- Convert probability into equivalent sigma

Analysis chains

How do you know the analysis is right?

Error

Model

How distributions change

Convolution & the central limit theorem

Example: power of random electric field

Average (or sum) is convolution of pdfs

Convolutions

Brian Amberg

pdf of sums & averages

- pdf of a sum is given by the convolution of the two pdfs
- average is a sum with the horizontal axis rescaled
 - calculate sum pdf, rescale axis to get average pdf