Modern Analysis

Miguel F. Morales
Bryna Hazelton

echniques for Large

Data Sets

“FINAL . doc

C

?
FINAL _rev.6.COMMENTS. doc FINAL _rev.8.commentsS.

JORGE CHAM © 2012

CORRECTIONS.doc

S
FINAL_rev.18.comments?. EINAL _rev.22.commentai9.
corrections?.MORE.30.doC ¢orrections.10. #@$%WHYDID

WWW.PHDCOMICS.COM

git and GitHub

git
+ version control
local + remote

GitHub

Tools for collaboration
Issue tracking, pull requests with code review, forking
hosting & public access

Why version control (and git)

simplicity
only need one copy
always clear what the current version is
git just tracks changes
backup!

freedom 1o delete code

git keeps the full history, you can always resurrect old code
don’t need to keep commented code around ‘just in case’

provenance and reproducibility

makes it possible to track exactly what code was run for any analysis
fine-grained history

good support for branching and merging
supports development separate from a stable ‘main’ branch
aids parallel development

GitHub collaboration tools

Issue tracking
with labelling, assignments and links between issues and PRs

Pull Requests (PRs)

build code reviews into the process of merging in new functionality

mtegratlons with other services

Continuous integration: tests and other checks run every time the repo is
updated

Documentation hosting: rebuild the documentation every time the repo is
updated

user interface for exploring code changes
graphical diffs between any commits or branches

git basics

local repository

a complete copy (with the full history) on your local machine
self-contained and self-sufficient

remote repository

a complete copy hosted remotely (e.g. on GitHub) — the repository all
collaborators have access to

snapshots (commits)

the unit of tracking within git — can be multiple changes to multiple files
should be used to identify ‘atomic’ changes — things that go together

commit early & often — fine-grained commits make the history more
useful

git add git commit

/\/‘\

git status: use frequently to understand where files & code
changes are in this process

git add git commit git push

git merge

git pull

git status: use frequently to understand where files & code
changes are in this process

Live Demo with GitKraken

git user interfaces

command line

most control and awareness of what you are doing
can be hard to visualize the process

gw (GitKraken, Sourcelree, Lazygit — terminal gui!)
good for visualizing the process
great interface for viewing history and diffs
encourages some good practices (viewing changes before adding)
easy to do powerful things (add parts of files, deal with merge conflicts, undo)
can obscure details or make it too easy to make mistakes

GitHub

great interface for viewing history and diffs, but restricted to what’s on the
remote
required for issue tracking and pull request management

Making a new repository

On GitHub

choose public or private

Initialize with a readme

choose a .gitignore (also see https://githulb.com/qgithubb/gitignore for
more language options, including matlab)

choose a license

Clone the repository locally
ssh vs https
git clone <repo-address>
git remote -v 10 see the address of the remote

https://github.com/github/gitignore

git contig

Global settings for git

- name and email address (to identify who made changes) — should
match email associated with your GitHub account
preferred text editor (for commit messages)

O see current settings:
git config —list

To change these settings:

git config --global user.name "Vlad Dracula’
git config --global user.email
"vlad@tran.sylvan.ia"

git config --global core.editor "nano -w”

making changes

Check the status

use git status to see what things have changed
use this command liberally — it’s always safe and helps you know what’s
going on
ldentify all the changes you want to snapshot together
use git diff to see what the changes are
use git add <file>to move changes to the staging area
only include changes that go together

make the snapshot
use git commit to make the snapshot: brings up a browser to add a
commit message
Of git commit -m ‘your message here’
commit messages should be descriptive

view the history
git log, git show

syncing with the remote

get snapshots from the remote
use git fetch to get the snapshots but not apply them to the local repo
use git status to see differences between the local and remote
use git merge to apply the snapshots to the local repo
git pullis git fetch immediately followed by git merge but
doesn’t let you examine the snapshots before applying them

send your snapshots to the remote
use git push to send your local snapshots to the remote

git will not let you push if there are snapshots on the remote that you have
not yet merged into your local repository

view the history
git log, git show

branching

create a new branch and switch to it
use git checkout -b <branch name> to create the branch and
switch to it
for existing branches, use git checkout <branch name> to
switch to that branch

make changes and snapshots on that branch

push the branch up to the remote

use git push --set-upstream origin <branch name> 1O
make a branch on the remote that tracks your new local branch
make more changes and snapshots and push/pull

to merge the branch into the main, make a pull request
leads to a code review

merging Vs relbasing branches

* merging in branches is straightforward, but can result in a
somewhat complicated graph

relbasing is an alternative approach that results in a neat,

iINnear graph at the expense of rewriting history

relbasing effectively moves the location that a branch

eaves the tree

*can be used to place branches at the tip of the master

branch to avoid having to merge

- effectively replays the changes In the branch after the

end of the master branch

Resources

+ it parable (conceptually building up why qgit is the way it is):
https://tom.preston-werner.com/2009/05/19/the-qit-
parable.html

- Software Carpentry hands-on tutorial: http://
swcarpentry.github.io/git-novice/

- Lab-style git intro: https://github.com/HERA-Team/
CHAMP_Bootcamp/blob/master/Lesson? IntroToComputing/
ait-lab-handout.pdf

+ eScience office hours (https://escience.washington.edu/office-
hours/#eScienceDataScientists)

/4

https://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://swcarpentry.github.io/git-novice/
http://swcarpentry.github.io/git-novice/
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://escience.washington.edu/office-hours/#eScienceDataScientists
https://escience.washington.edu/office-hours/#eScienceDataScientists
https://escience.washington.edu/office-hours/#eScienceDataScientists

Collaborating with Git

ub

Collaborative Data Analysis

+Issues for discussion threads (e.g. https://github.com/
EoRImaging/FHD/issues/39)

- threaded logbook linked to code

+ making your advisor useful to you

+use plots!

+ closing to mark as resolved

Collaborating on code

- Branching workflow
- make a branch for a specific topic
*you can have multiple branches!

- Pull Requests for code reviews (pyuvdata link)
- linking to issues

- GitHub Milestones/Projects

- track sets of issues towards a larger goal

Reproducibility & Open Science

public code
complementary (some times required) to publishing
documentation and readability are key
the analysis is the code — allows others to see what you did

Open source code
requires an open source license
AP| documentation
unit testing and continuous integration
building a user community

reproducibllity
- capture of versions & settings
open data
full stack capture, containers (docker)

