
Modern Analysis Techniques for Large Data Sets

Miguel F. Morales

Bryna Hazelton

git and GitHub

• git
• version control
• local + remote

• GitHub
• Tools for collaboration

• Issue tracking, pull requests with code review, forking
• hosting & public access

Why version control (and git)

• simplicity
• only need one copy
• always clear what the current version is
• git just tracks changes
• backup!

• freedom to delete code
• git keeps the full history, you can always resurrect old code
• don’t need to keep commented code around ‘just in case’

• provenance and reproducibility
• makes it possible to track exactly what code was run for any analysis
• fine-grained history

• good support for branching and merging
• supports development separate from a stable ‘main’ branch
• aids parallel development

GitHub collaboration tools

• Issue tracking
• with labelling, assignments and links between issues and PRs

• Pull Requests (PRs)
• build code reviews into the process of merging in new functionality

• integrations with other services
• Continuous integration: tests and other checks run every time the repo is

updated
• Documentation hosting: rebuild the documentation every time the repo is

updated

• user interface for exploring code changes
• graphical diffs between any commits or branches

git basics

• local repository
• a complete copy (with the full history) on your local machine
• self-contained and self-sufficient

• remote repository
• a complete copy hosted remotely (e.g. on GitHub) — the repository all

collaborators have access to

• snapshots (commits)
• the unit of tracking within git — can be multiple changes to multiple files
• should be used to identify ‘atomic’ changes — things that go together
• commit early & often — fine-grained commits make the history more

useful

Working
directory

staging area
(index)

local repository:
snapshots

remote
repository:
snapshots

Working
directory

staging area
(index)

local repository:
snapshots

remote
repository:
snapshots

git add git commit

git status: use frequently to understand where files & code
changes are in this process

Working
directory

staging area
(index)

local repository:
snapshots

remote
repository:
snapshots

git add git commit

git fetch

git push

git merge

git pull

git status: use frequently to understand where files & code
changes are in this process

Live Demo with GitKraken

git user interfaces

• command line
• most control and awareness of what you are doing
• can be hard to visualize the process

• gui (GitKraken, SourceTree, Lazygit — terminal gui!)
• good for visualizing the process
• great interface for viewing history and diffs
• encourages some good practices (viewing changes before adding)
• easy to do powerful things (add parts of files, deal with merge conflicts, undo)
• can obscure details or make it too easy to make mistakes

• GitHub
• great interface for viewing history and diffs, but restricted to what’s on the

remote
• required for issue tracking and pull request management

Making a new repository

• On GitHub
• choose public or private
• initialize with a readme
• choose a .gitignore (also see https://github.com/github/gitignore for

more language options, including matlab)
• choose a license

• Clone the repository locally
• ssh vs https
• git clone <repo-address>
• git remote -v to see the address of the remote

https://github.com/github/gitignore

git config

• Global settings for git
• name and email address (to identify who made changes) — should

match email associated with your GitHub account
• preferred text editor (for commit messages)

• To see current settings:
• git config —list

• To change these settings:
• git config --global user.name "Vlad Dracula"
• git config --global user.email

"vlad@tran.sylvan.ia"
• git config --global core.editor "nano -w”

making changes

• Check the status
• use git status to see what things have changed
• use this command liberally — it’s always safe and helps you know what’s

going on
• Identify all the changes you want to snapshot together

• use git diff to see what the changes are
• use git add <file> to move changes to the staging area
• only include changes that go together

• make the snapshot
• use git commit to make the snapshot: brings up a browser to add a

commit message
• or git commit -m ‘your message here’
• commit messages should be descriptive

• view the history
• git log, git show

syncing with the remote

• get snapshots from the remote
• use git fetch to get the snapshots but not apply them to the local repo
• use git status to see differences between the local and remote
• use git merge to apply the snapshots to the local repo
• git pull is git fetch immediately followed by git merge but

doesn’t let you examine the snapshots before applying them

• send your snapshots to the remote
• use git push to send your local snapshots to the remote
• git will not let you push if there are snapshots on the remote that you have

not yet merged into your local repository

• view the history
• git log, git show

branching

• create a new branch and switch to it
• use git checkout -b <branch_name> to create the branch and

switch to it
• for existing branches, use git checkout <branch_name> to

switch to that branch
• make changes and snapshots on that branch
• push the branch up to the remote

• use git push --set-upstream origin <branch_name> to
make a branch on the remote that tracks your new local branch

• make more changes and snapshots and push/pull
• to merge the branch into the main, make a pull request

• leads to a code review

merging vs rebasing branches

• merging in branches is straightforward, but can result in a
somewhat complicated graph

• rebasing is an alternative approach that results in a neat,
linear graph at the expense of rewriting history

• rebasing effectively moves the location that a branch
leaves the tree
• can be used to place branches at the tip of the master

branch to avoid having to merge
• effectively replays the changes in the branch after the

end of the master branch

Resources

• git parable (conceptually building up why git is the way it is):
https://tom.preston-werner.com/2009/05/19/the-git-
parable.html

• Software Carpentry hands-on tutorial: http://
swcarpentry.github.io/git-novice/

• Lab-style git intro: https://github.com/HERA-Team/
CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/
git-lab-handout.pdf

• eScience office hours (https://escience.washington.edu/office-
hours/#eScienceDataScientists)

https://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://swcarpentry.github.io/git-novice/
http://swcarpentry.github.io/git-novice/
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://escience.washington.edu/office-hours/#eScienceDataScientists
https://escience.washington.edu/office-hours/#eScienceDataScientists
https://escience.washington.edu/office-hours/#eScienceDataScientists

Collaborating with GitHub

Collaborative Data Analysis

• Issues for discussion threads (e.g. https://github.com/
EoRImaging/FHD/issues/39)

• threaded logbook linked to code

• making your advisor useful to you

• use plots!

• closing to mark as resolved

Collaborating on code

• Branching workflow

• make a branch for a specific topic

• you can have multiple branches!

• Pull Requests for code reviews (pyuvdata link)

• linking to issues

• GitHub Milestones/Projects

• track sets of issues towards a larger goal

Reproducibility & Open Science

• public code
• complementary (some times required) to publishing
• documentation and readability are key
• the analysis is the code — allows others to see what you did

• open source code
• requires an open source license
• API documentation
• unit testing and continuous integration
• building a user community

• reproducibility
• capture of versions & settings
• open data
• full stack capture, containers (docker)

