
Modern Analysis Techniques for Large Data Sets

Miguel F. Morales

Bryna Hazelton





git and GitHub

• git

• version control

• local + remote


• GitHub

• Tools for collaboration


• Issue tracking, pull requests with code review, forking

• hosting & public access



Why version control (and git)

• simplicity

• only need one copy

• always clear what the current version is

• git just tracks changes

• backup!


• freedom to delete code

• git keeps the full history, you can always resurrect old code

• don’t need to keep commented code around ‘just in case’


• provenance and reproducibility

• makes it possible to track exactly what code was run for any analysis

• fine-grained history


• good support for branching and merging

• supports development separate from a stable ‘main’ branch

• aids parallel development



GitHub collaboration tools

• Issue tracking

• with labelling, assignments and links between issues and PRs


• Pull Requests (PRs)

• build code reviews into the process of merging in new functionality


• integrations with other services

• Continuous integration: tests and other checks run every time the repo is 

updated

• Documentation hosting: rebuild the documentation every time the repo is 

updated


• user interface for exploring code changes

• graphical diffs between any commits or branches 



git basics

• local repository

• a complete copy (with the full history) on your local machine

• self-contained and self-sufficient


• remote repository

• a complete copy hosted remotely (e.g. on GitHub) — the repository all 

collaborators have access to


• snapshots (commits)

• the unit of tracking within git — can be multiple changes to multiple files

• should be used to identify ‘atomic’ changes — things that go together

• commit early & often — fine-grained commits make the history more 

useful



Working 
directory

staging area 
(index)

local repository:

snapshots

remote 
repository:

snapshots



Working 
directory

staging area 
(index)

local repository:

snapshots

remote 
repository:

snapshots

git add git commit

git status: use frequently to understand where files & code 
changes are in this process 



Working 
directory

staging area 
(index)

local repository:

snapshots

remote 
repository:

snapshots

git add git commit

git fetch

git push

git merge

git pull

git status: use frequently to understand where files & code 
changes are in this process 



Live Demo with GitKraken



git user interfaces

• command line

• most control and awareness of what you are doing

• can be hard to visualize the process


• gui (GitKraken, SourceTree, Lazygit — terminal gui!)

• good for visualizing the process

• great interface for viewing history and diffs

• encourages some good practices (viewing changes before adding)

• easy to do powerful things (add parts of files, deal with merge conflicts, undo)

• can obscure details or make it too easy to make mistakes


• GitHub

• great interface for viewing history and diffs, but restricted to what’s on the 

remote

• required for issue tracking and pull request management



Making a new repository

• On GitHub

• choose public or private

• initialize with a readme

• choose a .gitignore (also see https://github.com/github/gitignore for 

more language options, including matlab)

• choose a license


• Clone the repository locally

• ssh vs https

• git clone <repo-address>
• git remote -v to see the address of the remote

https://github.com/github/gitignore


git config

• Global settings for git

• name and email address (to identify who made changes) — should 

match email associated with your GitHub account

• preferred text editor (for commit messages)


• To see current settings:

• git config —list

• To change these settings:

• git config --global user.name "Vlad Dracula"
• git config --global user.email 

"vlad@tran.sylvan.ia"
• git config --global core.editor "nano -w”



making changes

• Check the status

• use git status to see what things have changed

• use this command liberally — it’s always safe and helps you know what’s 

going on

• Identify all the changes you want to snapshot together


• use git diff to see what the changes are

• use git add <file> to move changes to the staging area

• only include changes that go together


• make the snapshot

• use git commit to make the snapshot: brings up a browser to add a 

commit message

• or git commit -m ‘your message here’

• commit messages should be descriptive 

• view the history 
• git log, git show



syncing with the remote

• get snapshots from the remote

• use git fetch to get the snapshots but not apply them to the local repo

• use git status to see differences between the local and remote

• use git merge to apply the snapshots to the local repo

• git pull is git fetch immediately followed by git merge but 

doesn’t let you examine the snapshots before applying them


• send your snapshots to the remote

• use git push to send your local snapshots to the remote

• git will not let you push if there are snapshots on the remote that you have 

not yet merged into your local repository


• view the history 
• git log, git show



branching

• create a new branch and switch to it

• use git checkout -b <branch_name> to create the branch and 

switch to it

• for existing branches, use git checkout <branch_name> to 

switch to that branch

• make changes and snapshots on that branch

• push the branch up to the remote


• use git push --set-upstream origin <branch_name> to 
make a branch on the remote that tracks your new local branch


• make more changes and snapshots and push/pull

• to merge the branch into the main, make a pull request


• leads to a code review



merging vs rebasing branches

• merging in branches is straightforward, but can result in a 
somewhat complicated graph


• rebasing is an alternative approach that results in a neat, 
linear graph at the expense of rewriting history


• rebasing effectively moves the location that a branch 
leaves the tree

• can be used to place branches at the tip of the master 

branch to avoid having to merge

• effectively replays the changes in the branch after the 

end of the master branch



Resources

• git parable (conceptually building up why git is the way it is): 
https://tom.preston-werner.com/2009/05/19/the-git-
parable.html


• Software Carpentry hands-on tutorial: http://
swcarpentry.github.io/git-novice/ 


• Lab-style git intro: https://github.com/HERA-Team/
CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/
git-lab-handout.pdf


• eScience office hours (https://escience.washington.edu/office-
hours/#eScienceDataScientists)

https://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://swcarpentry.github.io/git-novice/
http://swcarpentry.github.io/git-novice/
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://github.com/HERA-Team/CHAMP_Bootcamp/blob/master/Lesson2_IntroToComputing/git-lab-handout.pdf
https://escience.washington.edu/office-hours/#eScienceDataScientists
https://escience.washington.edu/office-hours/#eScienceDataScientists
https://escience.washington.edu/office-hours/#eScienceDataScientists


Collaborating with GitHub



Collaborative Data Analysis

• Issues for discussion threads (e.g. https://github.com/
EoRImaging/FHD/issues/39)


• threaded logbook linked to code


• making your advisor useful to you


• use plots!


• closing to mark as resolved



Collaborating on code

• Branching workflow


• make a branch for a specific topic


• you can have multiple branches!


• Pull Requests for code reviews (pyuvdata link)


• linking to issues


• GitHub Milestones/Projects


• track sets of issues towards a larger goal



Reproducibility & Open Science

• public code

• complementary (some times required) to publishing

• documentation and readability are key

• the analysis is the code — allows others to see what you did


• open source code

• requires an open source license

• API documentation

• unit testing and continuous integration

• building a user community


• reproducibility

• capture of versions & settings

• open data

• full stack capture, containers (docker)


