Class 3: Statistical building blocks

Miguel F. Morales

Bryna Hazelton

Outline

- Analysis Chains
- Common statistical distributions
- Convolution \& central limit theorem
- Finding your background distribution

Analysis chains

How do you know the analysis is right?

Is it right at step \mathbf{X} ? (Newton's method of bug finding)

Useful statistical distributions

Key statistical steps

- Clearly state the question (\& turn into math)
- Determine the background distribution
- Integrate background to find probability
- Convert probability into equivalent sigma

Matlab playing

How distributions change

Convolution \& the central limit theorem

Convolutions

$$
(f \star g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Brian Amberg

Sum \& averaging

- Sum: pdf of result given by convolution of input pdfs
- Averaging is a sum with a rescaled x axis

Example: power of random electric field

$$
I=\left\langle E^{\dagger} E\right\rangle_{t}
$$

Average (or sum) is convolution of pdfs

Probability distributions of averages

- Averaging involves repeated convolution of pdfs
- Leads to central limit theorem
- Usually converges quickly to a Gaussian distribution

Repeated convolution

256 averages on semilogy

256 averages on semilogy

Mathematical relationships between distributions

- Mathematical operations change the noise distributions
- Any analysis step is math...

CRC Standard Probability and Statistics Tables and Formulae

Figure 6.28: Relationships among distributions (see page 161).

Clickable web site

- https://
www.johndcook.com/ blog/distribution chart/ \#exponential gamma
- Lives on web so might vanish, selection is OK

Song, IIE Transactions

Wikipedia

- Accurate
- Mathematicians have ruined some entries
- Look for 'related distributions'

Example (ADMX inspired)

- Electric field is digitized E_{t}
- Noise is Gaussian (real)
- Electric field is channelized into narrow frequency channels with a Fourier Transform $E_{f \Delta t}$
- Noise is complex Gaussian
- Electric field channels are squared to create spectrum $\left|E_{f}\right|_{\Delta t}^{2}$
- Noise is Exponential
- Spectrum is averaged $\left.\left.\langle | E_{f}\right|^{2}\right\rangle_{\Delta t}$
- Repeated convolution or Erlang distribution
- Eventually becomes Gaussian through central limit theorem

Measuring the background

Two related issues:

- Finding signal-free data
- Finding the 'shape’ of the background

Measuring the Background

Take signal-free data

LSST calibration

Figure 1: Calibration screen located inside the LSST dome

10 meter screen inside the dome

LSST screen specs:

- Illuminated with white light (UV to IR) and/or a frequency tunable laser
- Emission must be known to 0.2\% across the surface
- Used twice a day (afternoon \& morning)
- Must not take more than 4 hours(!)

Manipulate data to make signal disappear

Examples:

- Randomly shuffling the data so sources disappear
- Subtracting neighboring datasets
- Requires signal be slowly varying

Hope for isolated or rare signals

Isolated signals

- Identify energies, times, or locations where you don't think there is a signal and extrapolate to the region of interest
- Explicit assumptions about background behavior

Rare signals

- Find a time or area where you are fairly certain there is no signal

Simulate your background (Monte Carlo)

Make fake data without your signal

GEANT

- Purpose built particle physics simulator
- Entire instruments in simulation
- Conferences on how to make it more precise

Simulations fall in two categories

- Helping to understand how the instrument works
- Calculating fake background data (must be much more precise)

Step-by-step guide to Parametrizing the Background

1) Determine how to measure 'signal-free' background

- Take signal-free data
- Manipulate the data to remove the signal
- Hope for isolated or rare signals
- Monte Carlo

2) Make a histogram of background data on log plot

Always use a semilog plot!
3) Think about what kinds of pdfs you might expect

- What creates the background?
- Thermal noise, radioactive backgrounds, cosmic rays, other uninteresting sources, ...
- What systematics should I worry about?
- Is background stable in time, detector, energy, ...

4) Use to build a model of the background

The better the background model, the better the science

My thesis

