Class 5: Plot workshop cont., worries, more stats

Miguel F. Morales
Bryna Hazelton



Plot workshop

- Briefly describe science
- What is the question you want to answer with this plot”?
- |dentify key information & information that is less important
- |dentify key comparisons
- What can make plot easier to absorb?
- Are there red herrings?
+|s there additional information you need to answer the question”
-+ Can it be added to the plot (in a digestible way)?

+ |s there a partner plot (plot story)?



Data density examples
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Figure 2. The ratio between observed flux density and extrapolated flux
density from a fit to the SED is shown for every time a catalogue appeared
in a match with at least two other catalogues for i solated sources. The
upper panel shows a univariate kernal density estimation of each distribution
(note broken y axis due to the sharp peak in the NVSS ratio distribution),
while the lower panel shows the median and median absolute deviation
of each distribution. The KGS spectral index agrees very well with no
indication of flux bias on average.



Ribosome release score (RRS)
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FIG. 2. Fourier transform of the residuals from a time-series fit
following Eq. (5) but neglecting betatron motion and muon loss
(red dashed), and from the full fit (black). The peaks correspond
to the neglected betatron frequencies and muon loss. Inset:
asymmetry-weighted e™ time spectrum (black) from the Run-
Ic run group fit with the full fit function (red) overlaid.
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rials factor

Look elsewhere effect



Trials

The Vela satellites were launched in the mid 1960's to look
for atmospheric nuclear explosions. Assume the internal
gamma-ray detector had a background of 0.85 events per
second. After scanning through 120 days of data it has
looked at 10.4 million 1 second intervals. How many ‘5
sigma’ 1 second events will it have seen due to the
background”?



OR

P(A or B) =P(A) + P(B) — P(A and B)

- \When small prob

P(A or B) ~ P(A) + P(B)



Three closely related questions

- How many events above X would | expect to see”
- What is the probability of seeing one event above X?

- What is the probability of seeing one or more events above X7
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How to deal with trials

Multiplying pdf() by number of independent locations searched gives
number of events of strength X over ensemble; integral is number of
expected events stronger than X

- When expected number is small; expected number = Prob of 1 event
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How to deal with trials

- There Is a sensitivity penalty
Really must get tails right

Sensitivity penalty is small (~3x)
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LIGO NS-NS counterpart search

A 60° B Right ascension x~ X C

305, HL

Declination

OO

-30°

Declination

Right ascension



Data can drive trials




Parameters



Single parameter distribution
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Parameters

Treat llke a measurement—a value with some distribution

Because the underlying is Gaussian does not mean the
oDarameter is Gaussian, but can often propagate answer

chi-square



Multiple parameters
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Non-equal variance
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Covariance
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Aside on Fisher information matrix

- Dark Energy Task Force technical appendix is a good resource
. C=F"!
- I is the second derivative of the log likelihood at peak
0°In &
Fl:j — =
apiapj

. Conceptually is the Gaussian width (1/67) of the In &

-+ Assumes Gaussian statistics(!)

- Easy to marginalize over nuisance parameters by converting to C,
dropping rows/columns, inverting back
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Fig. 6. Comparison of the base ACDM model parameter constraints from Planck temperature and polarization data.
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Complicated interactio

parameter plots (can’t

NS lead to curved multi-
oe described with C or F')
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Take home message

Multiple parameters can depend on each other In
complicated ways

Don’t assume they are independent of one another

- Can be due to Theory, your model, instrument, nature, or
Interactions



he art of parameterization



SO you have a distribution to parametrize...

How do you pick ‘good’ parameters”

No good answer, topic of the
remainder of the course



Fallure modes

Too few parameters of the wrong type don’t describe the
distribution = significance calculations wrong

Too many parameters just ‘fit the elephant’

poorly constrained and/or highly covariant = unstable

00000




Maybe it’s not new?

- Sometimes you can propagate the distribution from an
earlier one that you understood.



DO you have a physical model?

-+ Physical models, particularly of an instrument, tend to
work better.

f they don’t work, you often learn something



Maybe there is a systematic?

- Often weirdness is caused by systematics

- Finding systematics is really adding to a physical model



Tests

- What are the covariances of the parameters on subsets
of the data”?

-+ Can | take special data to prove/explore a proposed
ohysical model?

DO parameters respond to my worries”? (Does it pass
jackknife tests?)

Love your data,
This is the value you add



