Class 10: Confidence intervals

Miguel F. Morales
Bryna Hazelton

Frequentist vs. Bayesian

Sigh...

When you ask the same question, you get the same answer

Common statistical questions

\square Am I confident this is a real signal?
■ I am confident I saw something, what was the real signal strength/level?

■ I didn't see anything, how faint/small must the signal have been for me not to see it?

Uncertainty on a Measurement

Uncertainty on a measurement

- What if you have a high σ detection, and now you want to know what the accuracy of your measurement is?

Uncertainty on a measurement

Example statistical question:

- If I performed the same measurement many times, what range of signal values would I observe?

Uncertainty on a measurement

Simulation approach

```
size = 10000;
noise = randn(1,size)*0.1;
signal = zeros(1,size);
signal(randi(numel(signal),[1,500])) = 2;
obssiganl = noise + signal;
```


Uncertainty on a measurement

Uncertainty on a measurement

Uncertainty on a measurement

Statistical question:

- If I performed the same measurement many times, what range of signal values would I observe?

Even if the signal strength is constant, we observe a range of measurements

Uncertainty on a measurement

Turn statistical question around:

- If I measure a signal once, what range of true signal strengths could have given me the same observation?

Test with simulation of two input signals (2.0 \& 2.2)

Uncertainty on a measurement

An asside in math notation

Read as:

- Given a particular true signal, what is the probability of getting a particular data value?

$P\left(\right.$ data \mid signal $\left._{\mathrm{T}}\right)$

An asside in math notation

$P\left(\right.$ data $\left.\mid \operatorname{signal}_{\mathrm{T}}\right)$

Two separate questions

A. If I performed the same measurement many times, what range of observed signal values (data) would I observe? $P\left(\right.$ data \mid signal $\left._{\mathrm{T}}\right)$
B. If I measure a signal once (data), what is the probability of the true signal strengths? $P\left(\right.$ signal $_{\mathrm{T}} \mid$ data $)$

Bayes' theorem

- Formally can change questions and calculate the desired $P\left(\right.$ signal $_{\mathrm{T}} \mid$ data $)$
- In practice must be used with great care

$$
P(s \mid d)=\frac{P(d \mid s) P(s)}{P(d)}
$$

Confidence interval

Simulated observations

How to make

- Start with background (model or data)
- Inject fake signals of varying strength
- Measure observed signal
- Histogram true signal vs. observed signal

Simulated observations

Slices

$$
P(d \mid s)
$$

Slices

What if I measure data value X and what to know what the range of true signals might be?

Slices

$$
P(s \mid d)
$$

Confidence interval

9.88 ± 2.0

Confidence interval

9.88 ± 2.0

- Best guess at the true signal
- 1σ : " 68% of the time the true signal will be in this range"
- 2σ " 95% of the time the true signal will be in this range"

Visual Bayes Theorem

$$
P(s \mid d)=\frac{P(d \mid s) P(s)}{P(d)}
$$

Asymmetric, non-zero mean background

Background

You observe a signal of 14 , sketch $P(s \mid d)$

Sketch

- $P(d \mid s=9.5)$
- $P(s \mid d=14)$

$\underbrace{9.5_{-4.1}^{+2.3}}$

Reading a reported value

- \pm indicates range of true signal 65% of the time (1σ) or 95% of the time (2σ)
- $X \pm Y$ implies symmetric background distribution, usually implies Gaussian
- X_{-y}^{+z} indicates asymmetric background distribution

Upper limits

Upper Limit

I didn't see anything significant...

- How faint must the signal have been for me not to see it?

What is the statistical question?

- How faint must the signal have been for me not to see it?
- If it was brighter than X, I would have seen it 95% of the time

Simulated observations

Signal pdf()

Simulated observations

Simulated observations

Signal you would have seen 95\% of the time

Signal you would have seen 95\% of the time

Because I observed a value of 1.9 , I know I would have observed a signal of strength 6.4 95% of the time. So my 95% upper limit is 6.4

Putting it all together

Determine 5σ threshold

Do experiment
Below 5 \downarrow Above 5σ

Simulated observations

Determine 5σ threshold

Do experiment
Below 5 \downarrow Above 5σ

No formula

- Determine the question you want to ask in precise words; then convert to math

Not yet questions:

- I've done X, what is the significance?
- What question do you want to ask?
- I have a background $\left(P\left(d \mid s_{T}\right)\right)$, what prior should I multiply by?
- Very dangerous, the Bayesian prior depends on the question you want to ask.

