
Class 11: Metadata, Provenance & Test Thickets

Bryna Hazelton

Miguel F. Morales

Metadata

All the information about your data

• When it was taken

• What instrument took it/How it was taken

• Environmental data/State of the instrument (telemetry)

• How it was calibrated (calibration version, code that did
calibration, etc.)

• Prior steps in analysis

Any information you need about the data for a plot or jackknife

Metadata as a nutrition label for your data

Tagging your data with information
Da

ta
 ta

ke
n

by
:

Ve
ra

Ru
bi

n
te

les
co

pe
 

Da
te

:
8/

22
/2

02
3

…

Fi
lte

rs
:

U

So
ur

ce
 ID

: 2
D

Ga
us

s
v4

Se
tti

ng
s:

 2
m

as
…

Gi
t #

 3
5b

70
a8

…

Ca
lib

ra
tio

n
ap

pl
ied

:

v2
2,

 u
sin

g
ca

l d
at

a
fro

m
 8

/2
1/

23

Gi
t #

 a
85

58
72

…

Data Analysis

4

Metadata goals

• Basic: you can read the information about your data
from the file (nutrition label for everything on a plot, all
information needed for a data jackknife)

• Goal: you can recreate the analysis as needed (routines
run, git hashes, etc. — supports analysis jackknife)

• Advanced: can recreate full instrument & analysis state
(e.g. adds links back into Monitor & Control database;
library versions)

Generating and capturing metadata

• Automated when possible

• more consistent, automate and forget

• may need intermediate storage, e.g. database

• If you can’t automate, build a system that makes it easy to
remember to capture and record it

• file formats that are both human editable and machine
readable, e.g. yaml

• Integrate it into data files as early in your pipeline as possible

Storing metadata

• Don’t store it in the file name

• Too mutable

• Not enough space

• Almost all modern file formats have locations for metadata (e.g.
headers)

• HDF5, FITS, AVRO…

• Some common file formats do not!

• CSV, tab delimited text files

Use a standard binary file format (HDF5, FITS, AVRO)

• Accurate (conversion, endian issues, etc.)

• Compact (stores the bits; lossless compression possible)

• Fast (no extra conversion)

• Partial read & write (some of them, important for big data)

• Standard & user defined places to put metadata!

• Use existing standards in your field as much as possible

• Be as consistent as possible with field names

Filenames

• It is useful to have some metadata in filename

• File number, date, etc.

• Too easy to overwrite

• Store all metadata in file headers

• Copy useful subset into file name for convenience

• If internal metadata and file name disagree, internal
wins

Standard identifiers

• Standard identifiers can help with linking metadata stored
in other locations (if impractical to store in the data file)

• other files or databases (e.g. monitor and control)

• e.g. the GPS second that the data were taken

• need to be unique for a dataset

• better to be meaningful rather than arbitrary

Provenance

Metadata goals

• Basic: you can read the information about your data
from the file (nutrition label for everything on a plot, all
information needed for a data jackknife)

• Goal: you can recreate the analysis as needed (git
hashes, etc. — supports analysis jackknife)

• Advanced: can recreate full instrument & analysis state
(e.g. adds links back into Monitor & Control database)}Provenance

You can recreate your analysis

Provenance examples

• Instrumental settings & environment (telemetry)
• control knob settings
• temperatures/voltages/field strengths etc.
• component versions, identifiers & connectivity

• timestamps
• code

• full code version information
• command-line arguments & keywords
• timestamp of when the code was run

• version information for any code/database/file used as an
external input to the analysis

• full stack: versions of os & external libraries

History table pattern

• Header(s) for data and instrument information

• History header that each piece of code appends to
• full code version information (version + git hash)
• command-line arguments & keywords
• timestamp of when the code was run

Analysis traceability

• Code that ran to produce file
• All command-line arguments & settings
• code version
• git hash (unique identifier of a commit)

Se
tti

ng
s:

 K
AT

AL
OG

S

ca
l;

50
-6

00
λ;

 …

Gi
t #

 7
72

ea
c7

…

Se
tti

ng
s:

 Tu
rk

ey
; L

S
tra

ns
fo

rm
; …

Gi

t #
 3

5b
70

a8
…

Se
tti

ng
s:

 in
te

gr
at

e
Be

ar
ds

ley
; …

Gi

t #
 a

85
58

72
…

Data Analysis

4

Data unit tests

4 Hazelton

In python, use setuptools_scm for versioning

• Version string: imost recent git tag + number of commits
since that tag + the git hash (uniquely identifies a commit).

• Setup is a little fiddly, in particular it’s helpful to set it up so
that the `__version__` attribute of a package contains the
setuptools_scm derived string.

• In some of our projects we also capture the branch name
in the version

• This requires a little extra code, see https://github.com/
RadioAstronomySoftwareGroup/pygitversion

https://github.com/RadioAstronomySoftwareGroup/pygitversion
https://github.com/RadioAstronomySoftwareGroup/pygitversion
https://github.com/RadioAstronomySoftwareGroup/pygitversion

In other languages, call git directly

• origin (e.g. url to the repo on github):

• git config --get remote.origin.url <path_to_local_repo>

• branch

• git rev-parse --abbrev-ref HEAD <path_to_local_repo>

• description (a string with latest tag + number of commits since tag + short hash
+ indication of local uncommitted changes)

• git describe --dirty --tag —always <path_to_local_repo>

• full hash (not required if you get the description)

• git rev-parse HEAD <path_to_local_repo>

full info: origin + branch + description (tag, # commits since tag, hash)

Test thickets

Make it idiot proof and someone will make a better idiot

Test thickets combine:

• Worry tests

• Visualization

• Provenance

Test thickets

• Capture good worry tests, and run every time (automated!)

• plots/tests that have caught problems before are great:
prevent similar mistakes in the future

• Don’t be too clever, sanity tests are great

• Goal 1: pre-calculate the first tests you would perform if
something looks off

• Goal 2: make any major problem obvious—cover possible
screw ups

Testing thicket

• Make good plots an integral part of your analysis

• Diversity of data views key

• Way of loving large data sets

Diagnostic plots

Protecting a result

Your
result

Test
thicket

Error
Prop

Diag Plots
& Tests

Code
Prov

Worry
list

Final Presentation

• 20 min (5 min intro; 10 min analysis you are doing; 5 min
questions)

• Email me if: early or late preference, or don’t want to
present

