Class 11: Metadata,

Bryna Hazelton
Miguel F. Morales

Provenance &

est

hickets



Metadata

All the information albout your data
- When it was taken
- What instrument took it/How it was taken
- Environmental data/State of the instrument (telemetry)

- How it was calibrated (calibration version, code that did
calibration, etc.)

- Prior steps in analysis

Any information you need about the data for a plot or jackknife



Metadata as a nutrition label for your data

I .
{Nutrition Facts

Serving Size 1/2 cup (125g)
Servings Per Container about 3.5

Amount Per Serving
M"O CdOﬂBSfmm’:ﬂ "“ INGREDIENTS:
% Dally e

Total Fat 1g
Saturated Fat Og
Trans Fat Og

Cholesterol Omg

Sodium 10mg :

Total Carbohydrate 139 4
Dietary Fiber 2g n AT FORCOLOK
Sugars 6g N CONTAINS: MILK, WHEAT, 50!

; ‘ DISTRIBUTED BY ALDI INC
+ 2 BATAVIA, IL 60510

VitaminA0% e Vnaminc.

Calcium2% e lron2%
'PermDMVaumaebasedonaz.wOW




Tagging your data with information




Metadata goals

- Basic: you can read the information about your data
from the file (nutrition label for everything on a plot, all
information needed for a data jackknife)

- Goal: you can recreate the analysis as needed (routines
run, git hashes, etc. — supports analysis jackknife)

- Advanced: can recreate full instrument & analysis state
(e.g. adds links back into Monitor & Control database;
library versions)



Generating and capturing metadata

-+ Automated when possible
+ more consistent, automate and forget
+ may need intermediate storage, e.g. database

If you can’t automate, build a system that makes it easy to
remember to capture and record it

- file formats that are both human editable and machine
readable, e.g. yaml

Integrate it into data files as early in your pipeline as possible



Storing metadata

- Don’t store it In the file name
- Joo mutable
- Not enough space

- Almost all modern file formats have locations for metadata (e.g.
headers)

- HDF5, FITS, AVRO...
- Some common file formats do not!

-GSV, tab delimited text files



Use a standard binary file format (HDF5, FITS, AVRO)

» Accurate (conversion, endian issues, etc.)

»+ Compact (stores the bits; lossless compression possible)
+ Fast (no extra conversion)

- Partial read & write (some of them, important for big data)
-+ Standard & user defined places to put metadatal

- Use existing standards in your field as much as possible

-+ Be as consistent as possible with field names



Fllenames

[t Is useful to have some metadata In filename
File number, date, etc.
-+ Too easy to overwrite
- Store all metadata in file headers
-+ Copy useful subset into file name for convenience

f internal metadata and file name disagree, internal
WINS



Standard identifiers

- Standard identifiers can help with linking metadata stored
in other locations (if impractical to store in the data file)

- other files or databases (e.g. monitor and control)
- e.g. the GPS second that the data were taken
+ need to be unique for a dataset

- better to be meaningful rather than arbitrary



Provenance



Metadata goals

- Basic: you can read the information about your data
from the file (nutrition label for everything on a plot, all
iInformation needed for a data jackknife)

- Goal: you can recreate the analysis as needed (git

hashes, etc. — supports analysis jackknife) Provenance
\'/

- Advanced: can recreate full instrument & analysis state
(e.g. adds links back into Monitor & Control database)

You can recreate your analysis



Provenance examples

Instrumental settings & environment (telemetry)

+ control knob settings

- temperatures/voltages/field strengths etc.

- component versions, identifiers & connectivity
- timestamps
- code

- full code version information

- command-line arguments & keywords

- timestamp of when the code was run

- version information for any code/database/file used as an
external input to the analysis

- full stack: versions of os & external libraries



History table pattern

-+ Header(s) for data and instrument information

- History header that eac
- full code version info

N piece of code appends to

'mation (version + git hash)

- command-line arguments & keywords
- timestamp of when the code was run



Analysis traceabllity

Code that ran to produce file

All command-line arguments & settings
code version

git hash (unique identifier of a commit)



fhd_core/fhd_struct_init_antenna.pro

;NOTE: Eq2Hor REQUIRES Jdate to have the same number of elements as RA and Dec for precession!!

;;NOTE: The NEW Eq2Hor REQUIRES Jdate to be a scalar! They created a new bug when they fixed the old one
-Eq2Hor,ra_use,dec_use,Jdate,alt_arrl,az_arrl,lat=obs.lat,lon=obs.lon,alt=obs.alt,precess=1
+Eq2Hor,ra_use,dec_use,Jldate,alt arrl,az_arrl,lat=obs.lat,lon=obs.lon,alt=obs.alt =1, /nutate

za_arr=fltarr(psf_image_dim,psf_image_dim)+90. & za_arr[valid_i]=90.-alt_arrl

az_arr=fltarr(psf_image dim,psf _image dim) & az_arr[valid i]=az_arrl

k; (hMpc’)

Hazelton




In python, use setuptools_scm for versioning

+\ersion string: imost recent git tag + number of commits
since that tag + the git hash (uniquely identifies a commit).

- Setup is a little fiddly, in particular it’s helpful to set it up so
that the __version__ attribute of a package contains the
setuptools_scm derived string.

In some of our projects we also capture the branch name
IN the version

- This requires a little extra code, see https://qgithub.com/
RadioAstronomySoftwareGroup/pyqitversion



https://github.com/RadioAstronomySoftwareGroup/pygitversion
https://github.com/RadioAstronomySoftwareGroup/pygitversion
https://github.com/RadioAstronomySoftwareGroup/pygitversion

In other languages, call git directly

- origin (e.g. url to the repo on github):
git config --get remote.origin.url <path to local repo>
branch
git rev-parse --abbrev-ref HEAD <path to local repo>

- description (a string with latest tag + number of commits since tag + short hash
+ indication of local uncommitted changes)

git describe --dirty --tag —always <path to local repo>
- full hash (not required if you get the description)
git rev-parse HEAD <path to local repo>

full info: origin + branch + description (tag, # commits since tag, hash)



est thickets

Make it idiot proof and someone will make a better idiot



Test thickets combine:

- Worry tests
- VIsualization

Provenance



Test thickets

- Capture good worry tests, and run every time (automated!)

- plots/tests that have caught problems before are great:
prevent similar mistakes in the future

Don’t be too clever, sanity tests are great

- Goal 1: pre-calculate the first tests you would perform if
something looks oft

- Goal 2: make any major problem obvious—cover possible
SCrew ups



Testing thicket

- Make good plots an integral part of your analysis
- Diversity of data views key

- Way of loving large data sets



Anr4 -~

\se
2.06|——1 AT model XX obse\'\led No
d dirty xx P, model xx P,
® 10' 107 5 @ 10' 107
10' T

o 0
. 10

k, (h Mpc’)

2.06[
res yy Py

151]
0.95
@ 10' 10°
10 —E—E;?‘::Té‘&-“o 10"
0 __.—;—-:».-_- :l‘_:{y' ¥ o
1 q — -y L -_‘.‘ (3
0 — g -."‘.-‘:- i 'J“ 13
| s 10

102 10" (ns)

k, (h Mpc")

1.51

0.95 o
170 190 — E
k, (h Mpc")

(ns)

fhd_nb_Aug201 7_savedbp_w_cab|e_w_digiump (64)

e T T——
c e~ Y]

L 4




Protecting a result

Your A
Error result Caode



Final Presentation

- 20 min (5 min intro; 10 min analysis you are doing; 5 min
guestions)

—mail me if: early or late preference, or don’t want to
oresent




