9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

i= Contents

Data Types pat Pint 1o POF b

Check Data Types
Note: You can explore the associated workbook for this chapter in the cloud. Strings
. . . . Ceas String_Methods
There are four essential kinds of Python data with different powers and capabilities:
f-Strings

e Strings (Text) Integers & Floats

¢ Integers (Whole Numbers)

Multiplication

. Remaind
* Floats (Decimal Numbers) emainder
Booleans
* Booleans (True/False)
TypeError
Your Turn!

They're sort of like starter pack Pokémon!

Data Types

Take a look at the variables filepath_of_text and number_of_desired_word in the word count code below.

What differences do you notice between these two variables and their corresponding values?

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/05-Data-Types.html 1/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

Import Libraries and Modules

import re
from collections import Counter

Define Functions

def split_into_words(any_chunk_of_text):
lowercase_text = any_chunk_of_text. lower()
split_words = re.split("\W+", lowercase_text)
return split_words

Define Filepaths and Assign Variables

filepath_of_text = "../texts/music/Beyonce-Lemonade.txt"
number_of_desired_words = 40

stopwords = ['i', 'me', 'my', 'myself', 'we', ‘'our', 'ours', 'ourselves', ‘'you', ‘'your',

'yours"',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers’',
‘herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',

'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', ‘'are’,
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',
‘did', 'doing', 'a‘', 'an', 'the', '‘and', 'but', 'if', 'or', 'because', 'as', 'until',

'while', 'of', ‘'at', 'by', 'for', 'with', ‘'about', 'against', 'between', 'into',

'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down',
‘in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here’',
'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',

'most', 'other', 'some', 'such', 'no', 'nor', 'not', ‘'only', 'own', 'same', 'so',

'than', 'too', ‘'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', ‘'ve',

‘amp']

Read in File

full_text = open(filepath_of_text, encoding="utf-8").read()
Manipulate and Analyze File

all_the_words = split_into_words(full_text)

meaningful_words = [word for word in all_the_words if word not in stopwords]
meaningful_words_tally = Counter(meaningful_words)

most_frequent_meaningful_words = meaningful_words_tally.most_common(number_of_desired_words)

Output Results

most_frequent_meaningful_words

You might be wondering...

Why is ".../texts/music/Beyonce-Lemonade.txt” colored in red and surrounded by quotation marks while 40 is
colored in green and not surrounded by quotation marks? Because these are two different “types” of Python

data.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/05-Data-Types.html

2/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

Data Type Explanation Example
String Text
""Beyonce-Lemonade. txt",
"lemonade"
Integer Whole Numbers
40
Float Decimal Numbers

40.2
Boolean True/False

False

Check Data Types

You can check the data type of any value by using the function type().

type("lemonade")

str

I type(filepath_of_text)

I type(40)
int

I type(number_of_desired_words)

Strings

A string is a Python data type that is treated like text, even if it contains a number. Strings are always
enclosed by either single quotation marks 'this is a string' or double quotation marks "this is a

string".
'this is a string'

"this is also a string, even though it contains a number like 42"

this is not a string

It doesn’t matter whether you use single or double quotation marks with strings, as long as you use the same

kind on either side of the string.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/05-Data-Types.html 3/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

If you need to include a single or double quotation mark inside of a string, then you need to either:

¢ use the opposite kind of quotation mark inside the string
e or "escape” the quotation mark by using a backslash \ before it

Escape characters
I "She exclaimed, 'This is a quotation inside a string!''" P
A backslash character \ tells Python

to treat the next character like a
normal character and to ignore any

I "She exclaimed, \"This is also a quotation inside a string!\"" . .
special meaning

String Methods

Each data type has different properties and capabilities. So there are special things that only strings can do,

and there are special ways of interacting with strings.

For example, you can index and slice strings, you can add strings together, and you can transform strings to
uppercase or lowercase. We're going to learn more about string methods in the next lesson, but here are a

few examples using a snippet from Beyoncé’s song “Hold Up.”

lemonade_snippet = "Hold up, they don't love you like I love you"

Index

lemonade_snippet [0]

Slice

lemonade_snippet [0:20]

Add

lemonade_snippet + " // Slow down, they don't love you like I love you"

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/05-Data-Types.html 4/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

Make uppercase

lemonade_snippet.upper()

f-Strings

A special kind of string that we're going to use in this class is called an f-string. An f-string, short for
formatted string literal, allows you to insert a variable directly into a string. f-strings were introduced with

Python version 3.6.

An f-string must begin with an f outside the quotation marks. Then, inside the quotation marks, the inserted
variable must be placed within curly brackets {}.

. o) What does \n mean?
print(f"Beyonce burst out of the building and sang: \n\n'{lemonade_snippet}'")

\n = new line

Integers & Floats

An integer and a float (short for floating point number) are two Python data types for representing numbers.
Integers represent whole numbers. Floats represent numbers with decimal points. They do not need to be
placed in quotation marks.

type(40)

int

type(40.5)

float

type(40.555555)

float

You can do a large range of mathematical calculations and operations with integers and floats. The table
below is taken from Python’s documentation about Numeric Types.

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/05-Data-Types.html 5/9

9/28/22,2:34 PM

Operation

X +y

X%y

+X

abs(x)

Data Types — Introduction to Cultural Analytics & Python

Explanation

sum of x and y

difference of x and y

product of x and y

quotient of x and y

floored quotient of x and

remainder of x / y

x negated

x unchanged

absolute value or magnitude of x

int(x) x converted to integer
float(x) x converted to floating point
pow(x, y) x to the power y
X ¥*y x to the power y
Multiplication
variablel = 4
variable2 = 2
variablel x variable2
Exponents
variablel s* variable2
Remainder
72 % 10

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/05-Data-Types.html

6/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

Booleans

Booleans are “truth” values. They report on whether things in your Python universe are True or False. There
are the only two options for a boolean: True or False.

For example, let's assign the variable beyonce the value "Grammy award-winner"

beyonce = "Grammy award-winner"

Z Python Review

Remember the difference between a single equals sign = and a double equals sign ==?

¢ Asingle equals sign =" is used for variable assignment
¢ A double equals sign "=="is used as the equals operator

We can "“test” whether the variable beyonce equals "Grammy award-winner" by using the equals operator ==.
This will return a boolean.

beyonce == "Grammy award-winner"
I type(beyonce == "Grammy award-winner")
bool

If we evaluate whether beyonce instead equals "0scar award-winner", we will get the boolean answer.

beyonce == "Oscar award-winner"

TypeError
If you don't use the right data “type” for a particular method or function, you will get a TypeError.

Let's look at what happens if we change the data type number_of_desired_words to a string "40" instead of
an integer.

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/05-Data-Types.html 7/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

import re
from collections import Counter

def split_into_words(any_chunk_of_text):
lowercase_text = any_chunk_of_text. lower()
split_words = re.split("\W+", lowercase_text)
return split_words

filepath_of_text = "../texts/music/Beyonce-Lemonade.txt"
number_of_desired_words = "40"
stopwords = ['i', 'me', 'my', 'myself',
'yours"',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers’',
'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',
'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', ‘are’,
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does’,
‘did', 'doing', 'a‘', 'an', 'the', ‘and', 'but', 'if', 'or', 'because', 'as', 'until',
'while', 'of', 'at', 'by', 'for', 'with', ‘'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', ‘'up', 'down',
‘in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here’',
'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
‘than', 'too', 'very', 's', 't', ‘'can', 'will', 'just', 'don', 'should', 'now',
‘amp']

we', ‘'our', 'ours', ‘'ourselves', 'you', 'your',

full_text = open(filepath_of_text, encoding="utf-8").read()

all_the_words = split_into_words(full_text)
meaningful_words = [word for word in all_the_words if word not in stopwords]
meaningful_words_tally = Counter(meaningful_words)

most_frequent_meaningful_words = meaningful_words_tally.most_common(number_of_desired_words)

most_frequent_meaningful_words

TypeError Traceback (most recent call last)
<ipython-input-7-al42b58e454a> in <module>
29 meaningful_words = [word for word in all_the_words if word not in stopwords]
30 meaningful_words_tally = Counter(meaningful_words)
--=> 31 most_frequent_meaningful_words =
meaningful_words_tally.most_common(number_of_desired_words)
32
33 most_frequent_meaningful_words

~/opt/anaconda3/lib/python3.7/collections/__init__.py in most_common(self, n)

584 if n is None:

585 return sorted(self.items(), key=_itemgetter(1l), reverse=True)
--> 586 return _heapg.nlargest(n, self.items(), key=_itemgetter(1))

587

588 def elements(self):

~/opt/anaconda3/lib/python3.7/heapq.py in nlargest(n, iterable, key)

544 pass
545 else:
——> 546 if n >= size:
547 return sorted(iterable, key=key, reverse=True)[:n]
548

TypeError: '>=' not supported between instances of 'str' and 'int'

Your Turn!

Here's an example of data types in action using some biographical information about me.

name = 'Prof. Walsh' #string

age = 1000 #integer

place = 'Chicago' #string
favorite_food = 'tacos' #string
dog_years_age = age *x 7.5 #float
student = False #boolean

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/05-Data-Types.html

ve', ',

8/9

9/28/22,2:34 PM Data Types — Introduction to Cultural Analytics & Python

print(f' This is...{name}! ")

print(f"""{name} likes {favorite_food} and once lived in {place}.
{name} is {age} years old, which is {dog_years_age} in dog years.
The statement '{name} is a student' is {student}.""")

print(f"m"

name = {type(name)}

age = {type(age)}

place = {type(place)}

favorite_food = {type(favorite_food)}
dog_years_age = {type(dog_years_age)}
student = {type(student)}

)

Let’s do the same thing but with biographical info about you! Ask your partner a few questions and then fill in
the variables below accordingly.

name = #Your code here

age = #Your code here

home_town = #Your code here
favorite_food = #Your code here
dog_years_age =#Your code here *x 7.5
student = False #boolean

print(f' This is...{name}! ')
print(f"""{name} likes {favorite_food} and once lived in {place}.

{name} is {age} years old, which is {dog_years_age} in dog years.
The statement "{name} is a student" is {student}.""")

Add a new variable called favorite_movie and update the f-string to include a new sentence about your
partner’s favorite movie.

name =
age =

home_town =
favorite_food =
dog_years_age =
#favorite_movie =

print(f' This is...{name}! ')

print(f"""{name} likes {favorite_food} and once lived in {place}.
{name} is {age} years old, which is {dog_years_age} in dog years.
The statement "{name} is a student" is {student}.

YOUR NEW SENTENCE HERE')

By Melanie Walsh
© Copyright 2021.

This book is licensed under a Creative Commons BY-NC-SA 4.0 License.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/05-Data-Types.html

9/9

