9/28/22,2:32 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

i= Contents

Anatomy of a Python Script he Mython Scrpt

Import Libraries/Packages/Modules

The first few times that | tried to learn Python, it felt like learning a bunch of made-up rules about an Define Functions

imaginary universe. It turns out that Python is kind of like an imaginary universe with made-up rules. That's Define Filepaths and Assign Variables

part of what makes Python and programming languages so much fun. Read in File
Manipulate and Analyze File
But it can also make learning Python difficult if you don't really know what the imaginary universe looks like, Output Results
or how it functions, or how it relates to your universe and your specific goals — such as doing text analysis or Comments
making a Twitter bot or creating a network visualization. The Life of a Python Script

Jupyter Notebook / JupyterLab

In this lesson, we're going to demonstrate what Python looks like in action, so you can get a feel for its Text Editor —> Command Line

structure and flow. Don’t get too bogged down in the details for now. Just try to get a sense — at an abstract

level — of how Python works and how you might use it.

Below is a chunk of Python code. These lines, when put together, do something simple yet important. They
count and display the most frequent words in a text file. The example below specifically counts and displays
the 40 most frequent words in Charlotte Perkins Gilman’s short story “The Yellow Wallpaper” (1892).

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/03-Anatomy-Python-Script.html 1/10

9/28/22,2:32 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

import re
from collections import Counter

def split_into_words(any_chunk_of_text):
lowercase_text = any_chunk_of_text. lower()
split_words = re.split("\W+", lowercase_text)
return split_words

filepath_of_text = "../texts/literature/The-Yellow-Wallpaper_Charlotte-Perkins—
Gilman.txt"
number_of_desired_words = 40

me', 'my', 'myself',

stopwords = ['i', we', ‘our',
'your', 'yours',

'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers’,
'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',
'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',
'did', 'doing', 'a‘', 'an', 'the', '‘and', 'but', 'if', 'or', 'because', 'as', 'until',
'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down',
'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once',
'here',

'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 've',
"', tamp'l

‘ours', 'ourselves', 'you',

full_text = open(filepath_of_text, encoding="utf-8").read()

all_the_words = split_into_words(full_text)

meaningful_words = [word for word in all_the_words if word not in stopwords]
meaningful_words_tally = Counter(meaningful_words)
most_frequent_meaningful_words =
meaningful_words_tally.most_common(number_of_desired_words)

most_frequent_meaningful_words

[('john', 45),
('one', 33),
('said', 30),
('‘would', 27),
('get', 24),
('see', 24),
('room', 24),
('pattern', 24),
('paper', 23),
('like', 21),
('little', 20),
('much', 16),
('good', 16),
('think', 16),
('well', 15),
('know', 15),
('go', 15),
('really', 14),
('thing', 14),

(*wallnaner' 13)

Calculating word frequency is a very basic form of computational text analysis. Typically, it's not terribly
interesting on its own, especially with a single short text. But calculating word frequency is important, and it's
at the center of most text analysis approaches, even far more complicated ones.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html

2/10

9/28/22,2:32 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

Z Python Review

It's important to emphasize that the code above is just one way to count words in a text file with
Python. This is not the one right way. There is no right way to count words in a text file or to do
anything else in Python.

Rather than asking "Is this code right?”, you want to ask yourself:

¢ ‘Is this code efficient?”
¢ ‘Is this code readable?”
e "Does this code help me accomplish my goal?”

Sometimes you'll prioritize one of these concerns over another. Maybe your code isn't as efficient as
humanly possible, but if it gets the job done, and you understand it, then you might not care about
maximum efficiency. Our main goal for this class is to study and make arguments about culture, not
(necessarily) to become the most efficient software developers.

The Anatomy of a Python Script

Import Libraries/Packages/Modules

Ready for some great Python news? You don't have to code everything by yourself from scratch! Many other
people have written Python code that you can import into your own code, which will save you time and do a
lot of work behind-the-scenes.

import re
from collections import Counter

We call the code written and packaged up by other people a “library,” “package,” or “module.” We'll talk more
about them in a later lesson. For now simply know that you import libraries/packages/modules at the very top
of a Python script for later use.

e Counter will help me count words
¢ re, short for regular expressions, is basically a fancy find-and-replace that will help me split “The Yellow
Wallpaper" into individual words and get rid of trailing punctuation

Define Functions

After importing modules and libraries, you typically define your “functions.” Functions are a nifty way to
bundle up code so that you can use them again later. Functions also keep your code neat and tidy.

def split_into_words(any_chunk_of_text):
words = re.split("\W+", any_chunk_of_text.lower())
return words

Here we're making a function called split_into_words, which takes in any chunk of text, transforms that text

to lower-case, and splits the text into a list of clean words without punctuation or spaces. We're not actually
using the function yet.

Define Filepaths and Assign Variables

Here we establish some variables that we're going to use later.

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/03-Anatomy-Python-Script.html 3/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

filepath_of_text = "../texts/literature/The-Yellow-Wallpaper_Charlotte-Perkins-

Gilman.txt"

number_of_desired_words = 40

stopwords = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
'your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers’,
'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',
'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',
'did', 'doing', 'a‘', 'an', 'the', ‘'‘and', 'but', 'if', 'or', 'because', 'as', 'until',
'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down',
'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once',
'here',
'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 've',
"', ‘tamp']

We'll need the filepath of the short story in order to read it, so we make a variable called filepath_of_text.
We also make a variable called number_of_desired_words, which will eventually tell the script how many
words to display.

Lastly we also make a variable called stopwords and plug in a list of common English language “stop
words"—that is, a list of some of the most frequently occurring English language words. Stop words are
typically removed from a text before computational analysis in order to shift the focus to less frequently

occurring, more “meaningful” words.

Read in File
full_text = open(filepath_of_text, encoding="utf-8").read()

The line above opens Charlotte Perkins Gilman’s “The Yellow Wallpaper,” reads in the novel, and assigns it to
the variable full_text.

Manipulate and Analyze File

To count the words in “The Yellow Wallpaper,” we need to break the full text into individual words. Below we
call the function split_into_words, which we created earlier, and use it to split the full_text of the story
into individual words. Then we assign this value to the variable all_the_words.

all_the_words = split_into_words(full_text)

Then we remove stopwords from our list. The line of code below makes a new list of words that includes
every word in all_the_words if it does not appear in stopwords (aka it nixes the stopwords).

meaningful_words = [word for word in all_the_words if word not in stopwords]

Now we're ready to count! We plug meaningful_words into our Counter, which gives us a tally of how many
times each word in the story appears.

meaningful_words_tally = Counter(meaningful_words)

Output Results

Lastly, we pull out the top 40 most frequently occurring words from our complete tally. We make one final
variable and grab our top number_of_desired_words, which we previously established as 40.

most_frequent_meaningful_words =
meaningful_words_tally.most_common(number_of_desired_words)

We can display our results by running a cell with the variable name most_frequent_meaningful_words.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html

Food for Thought

What are the consequences of
excluding stopwords from our
analysis? When might we want to
include such words in an analysis?

4/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

most_frequent_meaningful_words

[('john', 45),
('one', 33),
('said', 30),
('would', 27),
('get', 24),
('see', 24),
('room', 24),
('pattern', 24),
('paper', 23),
('like', 21),
('little', 20),
('much', 16),
('good', 16),
('think', 16),
('well', 15),
('know', 15),
('go', 15),
('really', 14),
('thing', 14),

('wallnaner' 13)

Or we can display our results by printing the variable most_frequent_meaningful_words.

print(most_frequent_meaningful_words)

[(*john', 45), ('one', 33), ('said', 30), ('would', 27), ('get', 24), ('see', 24),
('room', 24), ('pattern', 24), ('paper', 23), ('like', 21), ('little', 20), ('much',
16), ('good', 16), ('think', 16), ('well', 15), ('know', 15), ('go', 15), ('really’,
14), ('thing', 14), ('wallpaper', 13), ('night', 13), ('long', 12), ('course', 12)
('things', 12), ('take', 12), ('always', 12), ('could', 12), ('jennie', 12),
('great', 11), ('says', 11), ('feel', 11), ('even', 11), ('used', 11), ('dear', 11),
("time', 11), ('enough', 11), ('away', 11), ('want', 11), ('never', 10), ('must’',
10)1]

Comments

Lines that begin with a hash symbol # are ignored from the execution of the code. You can thus use a hash
symbol # to insert human language comments directly into the code — notes or instructions to yourself and
others.

In some cases, you might want to write a long comment. To insert a multi-line comment, you can insert the
comment between three quotations marks """ """,

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html 5/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

Example Python code for
calculating word frequency
in a text file

Import Libraries and Modules

import re
from collections import Counter

Define Functions

def split_into_words(any_chunk_of_text):
lowercase_text = any_chunk_of_text. lower()
split_words = re.split("\W+", lowercase_text)
return split_words

Define Filepaths and Assign Variables

filepath_of_text = "../texts/literature/The-Yellow-Wallpaper_Charlotte-Perkins—
Gilman.txt"
number_of_desired_words = 40

stopwords = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
'your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers’,
'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',
'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does’',
‘did', 'doing', 'a‘', 'an', 'the', ‘and', 'but', 'if', 'or', 'because', 'as', 'until',
'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down',
‘in', 'out', 'on', 'off', 'over', ‘'under', 'again', 'further', 'then', ‘'once',
'here',
'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'‘most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', '
"', ‘amp']

ve',

Read in File

full_text = open(filepath_of_text, encoding="utf-8").read()

Manipulate and Analyze File

all_the_words = split_into_words(full_text)

meaningful_words = [word for word in all_the_words if word not in stopwords]
meaningful_words_tally = Counter(meaningful_words)
most_frequent_meaningful_words =
meaningful_words_tally.most_common(number_of_desired_words)

Output Results

most_frequent_meaningful_words

https://melaniewalsh.github.io/Intro-Cultural- Analytics/02-Python/03-Anatomy-Python-Script.html 6/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

[('john', 45),
('one', 33),
('said', 30),
('would', 27),
('get', 24),
('see', 24),
('room', 24),
('pattern', 24),
('paper', 23),
('like', 21),
("little', 20),
('much', 16),
('good', 16),
('think', 16),
('well', 15),
('know', 15),
('go', 15),
('really', 14),
('thing', 14),
('wallpaper', 13),

[Vaiah+! 12\

The Life of a Python Script

Jupyter Notebook / JupyterLab

The primary way that we're going to write and run Python in this class is through JupyterLab and Jupyter
notebooks. As we've already covered, Jupyter notebooks are documents that can combine live code,
explanatory text, and nice displays of data, which makes them great for teaching and learning.

But it's also a fully functional way to run Python. By running a cell of Python code in a Jupyter notebook, you
can:

¢ read files from your computer and write files to your computer
* make and save a bar chart

e collect data from YouTube or Spotify

e programmatically tweet from a Twitter bot account

¢ and a lot more!

For example, by adding two lines of code at the bottom of our script, | can output the most frequent words
from “The Yellow Wallpaper"” into a text file.

def split_into_words(any_chunk_of_text):
lowercase_text = any_chunk_of_text. lower()
split_words = re.split("\W+", lowercase_text)
return split_words

filepath_of_text = "../texts/literature/The-Yellow-Wallpaper.txt"

nltk_stop_words = stopwords.words("english")

number_of_desired_words = 40

full_text = open(filepath_of_text, encoding="utf-8").read()

all_the_words = split_into_words(full_text)

meaningful_words = [word for word in all_the_words if word not in nltk_stop_words]
meaningful_words_tally = Counter(meaningful_words)

most_frequent_meaningful_words = meaningful_words_tally.most_common(number_of_desired_words)

with open("most-frequent-words-Yellow-Wallpaper.txt", "w") as file_object:
file_object.write(str(most_frequent_meaningful_words))

Text Editor —> Command Line
You can also run a Python script by writing it in a text editor and then running it from the command line.

If you copy and paste the code above into a simple text editor (like TextEdit or NotePad) and name the file
with the extension “.py"” (the file extension for Python code), you should be able to run the script from your
command line.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html 7/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

[JoN) [word_frequency._Yellow_Wallpaper.py
fImport Libraries and Modules

import re
from collections import Counter
from nltk.corpus, import stopwords

Define Functions

def split_into_words(any_chunk_of_text):
lowercase_text = any_chunk_of_text. lower()
split_words = re.split("\W+", lowercase_text)
return split_words

Define Filepaths and Assign Variables

filepath_of text = "../texts/literature/The-Yellow-Wallpaper.txt"

nltk_stop_words = stopwords.words("english")
number_of_desired_words = 40

Read in File

full_text = open(filepath_of_text).read()
Manipulate and Analyze File

all_the_words = split_into_words(full_text)

meaningful_words = [word for word in all_the_words if word not in
nltk_stop_words]

meaningful_words_tally = Counter(meaningful_words)
most_frequent_meaningful_words =
meaningful_words_tally.most_common(number_of_desired_words)

All you need to do is call python with the name of the Python file (and make sure that the script includes the

correct file path).

'python word_frequency_Yellow_Wallpaper.py

[('john', 45), ('one', 33), ('said', 30), ('would', 27), ('get', 24), ('see',
('‘room', 24), ('pattern', 24), ('paper', 23), ('like', 21), ('little', 20),
16), ('good', 16), ('think', 16), ('well', 15), ('know', 15), ('go', 15),
14), ('thing', 14), ('wallpaper', 13), ('night', 13), ('long', 12), ('course',
('things', 12), ('take', 12), ('always', 12), ('could', 12), ('jennie', 12),

('‘great', 11), ('says', 11), ('feel', 11), ('even', 11), ('used', 11), ('dear', 11)

('time', 11), ('enough', 11), ('away', 11), ('want', 11), ('never', 10),
10)1]

Though it's possible to write Python from TextEdit, it's not very common, because it's a pain. It's much more
common to write Python code in a text editor like Atom, as shown below. You can see that there’s all sorts of

formatting and functionality that makes the code writing faster and easier.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html

8/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

L} word_frequency_Yellow_Wallpaper.py — ~/Intro-Cultural-Analytics
@ word_frequency Yellow Wallpaper.py

#Import Libraries and Modules

import re

from collections import Counter

from nltk.corpus import stopwords

def split_into_words(any_chunk_of_ text):
lowercase_text = any_chunk_of_text.lower()
split_words = re.split("\W+", lowercase_text)

return split_words

Define Filepaths and Assign

filepath_of_text = "../texts/literature/The-Yellow-Wallpaper.txt"
nltk_stop_words = stopwords.words("english")

19 number_of_desired_words = 40

full_text = open(filepath_of_text).read()

You can also write Python scripts such that they can work with different files or any file you want it to. With a
few small alterations, our word frequency script can crunch numbers for Grimms Fairy Tales

or Louisa May Alcott’s Little Women

or any other text your heart desires!

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html 9/10

9/28/22,2:33 PM Anatomy of a Python Script — Introduction to Cultural Analytics & Python

By Melanie Walsh
© Copyright 2021.

This book is licensed under a Creative Commons BY-NC-SA 4.0 License.

https://melaniewalsh.github.io/Intro-Cultural-Analytics/02-Python/03-Anatomy-Python-Script.html 10/10

