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In designing cognitive neuroscience experiments, resource

limitations induce a fundamental trade-off between sampling

variation across individual brains and sampling variation across

experimental conditions. Here, we argue that extensive

sampling of experimental conditions is essential for

understanding how human brains process complex stimuli,

that a model of how any one brain does this is likely to

generalize to most other brains, and that introducing large

numbers of subjects into an analysis pool is likely to introduce

unnecessary and undesirable variance. Thus, contrary to

conventional wisdom, we believe that sampling many

individuals provides relatively few benefits and that extensive

sampling of a limited number of subjects is more productive for

revealing general principles. Furthermore, an emphasis on

depth in individual brains is well-suited for capitalizing on the

improvements in resolution and signal-to-noise ratio that are

being achieved in modern neuroscientific measurement

techniques.
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Introduction
When can cognitive neuroscientists stop doing experi-

ments? Each experiment costs society time, money, and

effort, and can pose risks to individual subjects, so it is

worth considering what our end-goal is and how we would

know when we have achieved it.

We assume that the end-goal is a complete model of the

human brain [1–3]. A complete model would be both oracle

and interpreter: it would predict with great accuracy the
www.sciencedirect.com 
brain activity and behavior that we would observe in

response to arbitrary stimuli and task instructions, and would

connect the observed responses to meaningful evolutionary,

developmental, computational, psychological, and philo-

sophical narratives.

The cognitive neuroscience of vision (where our interests

lie) works toward this end-goal one stimulus at a time.

Experimentalists present visual stimuli while measuring

brain activity using one of many techniques for interro-

gating neural activity (e.g., fMRI, EEG, MEG, ECoG,

electrophysiology). The cost of each experiment is the

accumulated cost of measuring these responses across

many stimuli. In this paper we consider whether it is

better to accumulate cost by sampling variation across

individuals, or by sampling variation across stimuli. Spe-

cifically, we ask which approach yields greater progress

toward the ambitious end-goal of a complete model?

Fundamental trade-off between sampling
individual variation and sampling stimulus
variation
Resource constraints on experimental design impose a

fundamental trade-off between sampling individual vari-

ation and sampling stimulus variation. We illustrate how a

number of recent fMRI studies have managed this trade-

off by plotting them in a two-dimensional space with

number of individual subjects as the y-axis and number

of hours of data per subject as the x-axis (Figure 1). We

acknowledge that the number of hours of scanning per

subject is only a proxy for how extensively a given experi-

ment samples variation across stimuli (or, more generally,

experimental conditions). We include resting-state fMRI

data collection in this plot under the working premise that

the ‘conditions’ that vary in this case are unmeasured

endogenous (e.g., cognitive, affective) states.

In an ideal world, all experiments would reside in the

upper right (many subjects and many hours per subject).

However, resource limitations force experimentalists to

distribute their efforts along iso-hour contours that extend

from the upper left (many subjects but few hours per

subject) to the lower right (many hours per subject but

few subjects). Traditional fMRI studies tend to collect

one session of data on about 10–20 participants (see gray

box). The studies illustrated in Figure 1 have deliberately

pushed sampling strategies towards one extreme (more

subjects) or the other (more data per subject).

Efforts that involve extensive data collection across large

numbers of individual brains but small numbers of exper-

imental conditions [4�,10,11�,24] are in line with cognitive
Current Opinion in Behavioral Sciences 2021, 40:45–51
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Figure 1
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Trade-off between number of subjects and amount of data per subject.

In the context of basic-science fMRI studies with publicly available data, we select a few representative publications, biasing towards recent and/

or influential studies. Selected publications include Biobank [4�], BOLD5000 [5��], CNeuroMod [6�], Doctor Who [7��], Dynamic Natural Vision [8],

Generic Object Decoding [9], HCP [10], HCP 7T Retinotopy [11�], IBC [12], Midnight Scan Club [13��], MOUS [14�], MyConnectome [15], Narratives

[16�], Naturalistic Neuroimaging Database [17], NSD [18��], StudyForrest [19,20], Task Sampling [21��], Vim-1 [22], and Vim-2 [23]. For each

publication, we plot the number of subjects scanned and the number of hours of task-based and resting-state fMRI conducted for each subject

(estimated based on information provided in the publication). The green dot denotes a soon-to-be-released study that is discussed in further detail

in this article, the gray dot denotes an upcoming study, and the thick ‘iso-hour’ lines indicate points that share the same number of total hours of

fMRI data.
neuroscience’s historical penchant for studies with large

(more than 20) numbers of subjects [25–27]. The intui-

tion behind this approach seems to be that inferring a

complete model of the human brain requires generalizing

over response patterns in the brains of many individual

humans. However, we argue that a complete model of the
human brain must be able to predict and interpret activity

in any one human brain, and that a complete model of the

brain of any one individual will bring us within striking

distance of a complete model that adequately describes

most individuals. This line of thinking has motivated us,

and presumably several others, to explore the other end of

the spectrum, sampling many stimuli (or experimental

conditions) in just a few individuals [5��,6�,7��,15,18��].

Many reasons for extensive sampling of
stimulus variation
The images of the natural world that the eye transmits to

the brain are ambiguous and complex [28]. While we can

learn much from probing the visual system with simple
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stimuli [29], we ultimately want to understand how the

brain solves the hard computational problem of interpret-

ing natural scenes. We take for granted the many argu-

ments that have been put forth in favor of using natural

stimuli to probe the visual system [30–33].

Understanding how the human brain interprets natural

images is likely to require extensive sampling of stimulus

variation. Natural scenes are high-dimensional and,

despite recent progress in modeling their statistical struc-

ture [34], it is not possible to adequately sample them by

varying a small number of controllable parameters. Fur-

thermore, visual (and auditory) features are often highly

correlated in stimuli, both natural [35] and synthetic [36],

and it is difficult to isolate individual features [37].

Correlation of stimulus features creates inferential chal-

lenges [38]: for example, an undersampled neuron that is

strongly activated by the color yellow can easily be

mistaken for a neuron that is strongly activated by

bananas.
www.sciencedirect.com
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A complete model of the human visual system will have to

specify how the high-dimensional space of natural stimuli

is transformed and represented by the human brain. Such

a model will necessarily be complex, with many potential

stimulus features and free parameters [39]; fitting and

adjudicating different models will therefore require sub-

stantial empirical data. Thus, we believe that to have any

hope of achieving a complete model of the visual brain,

extensive sampling of stimulus variation will be necessary.

Few reasons for sampling individual variation
For basic cognitive neuroscience, motivations for sam-

pling a large number of subjects (while collecting modest

data per subject) might include the following:

1 We might be concerned that what we observe to be true

of one brain may not be true of others.

2 We might want to increase the statistical power of our

analyses by adding more subjects.

3 We are actually interested in explaining individual

variation (or variation across groups).

In this section, we consider each of these motivations in

turn and suggest reasons why we nonetheless might want

to prioritize the sampling of stimulus over individual

variation. We acknowledge that there are other consider-

ations that may constrain a given study: for example,

extensive data collection might be impractical or too

exhausting for a given subject population, or a given

experiment might require novelty and cannot be repeated

(e.g., one-shot experiments, drug or brain-stimulation

treatments). We offer some thoughts on the issue of

subject burden later in this article.

Complete models of individuals are likely to generalize

Suppose that by dedicating all available experimental

resources, we are able to sample stimulus variation exten-

sively enough to construct a complete model of an indi-

vidual brain. Would this complete model of a single brain

do more to mislead us about general principles than it

would to reveal them?

Inferring general principles from relatively small numbers

of observations is a practice taken for granted in other

domains. For example, in physics, consider Kepler’s

deduction of the laws of planetary motion from a limited

set of observations. As another example, in neuroanat-

omy, consider the insights into structure-function rela-

tionships provided by Cajal’s exquisitely detailed draw-

ings of individual neurons. Whether these types of

generalizations succeed in cognitive neuroscience

remains an open question. However, we point out that

most of what we have learned about the organization of

mammalian visual systems suggests that a complete

model of an individual brain would yield useful insights.

Many principles of visual organization in human brains—
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such as retinotopic organization [40] and face-selectivity

[41]—not only generalize across individuals, but for the

most part generalize across species [42,43]. Beyond sen-

sory processing, there is even some evidence that cortical

organization of high-level task representations [21��] and

semantic processing [44] exhibits consistent structure

across individuals. We furthermore point out that gener-

alization is an existential assumption of animal models in

systems neuroscience: it is assumed that the brains of

other species have much to teach us about our own.

If we were to achieve a complete model of an individual,

it would certainly be important to test generalization of

the model. This could be done relatively quickly and

cheaply by testing a second or third subject. We would not

need to gather enough samples from the additional sub-

jects to derive complete models of their brains from

scratch—we would need just enough to test the generali-

zation of the model from the first subject, tweaking it to

account for local differences.

To be clear, we are arguing here that the most useful

insights for cognitive neuroscience lie in identifying

general principles that govern how functional activity

arises in the brain and how functional properties are

anatomically organized. To achieve this, we believe that

extensive sampling of individuals is essential. We

acknowledge that such an approach is not suitable for

assessing differences in the exact size or layout of maps or

functional properties across the population at large: we

feel it is more pressing to identify the axes that charac-

terize brain function as opposed to characterizing the

distribution of individuals along such axes.

More subjects = more ‘noise’

There are two radically different stances towards charac-

terizing function in brains [45]. In the group-oriented

stance, which perhaps is more typical in cognitive studies,

statistical variability (error) is computed across subjects

and effects are established at the group level. This

approach lends itself well to brain measurements con-

ducted at low spatial resolution and analyses that involve

deliberate spatial smoothing of neuroimaging data and/or

averaging of functional activity across subjects in a com-

mon anatomical space [46]. Accumulating samples of

brain activity in this fashion will certainly improve reli-

ability of group-average measures, but is likely to pre-

serve only the simplest and most coarse patterns of

activity. This is because the structural and functional

organization of the brain varies considerably across indi-

viduals at the fine scale [47]. While surface-based

approaches for registering cerebral cortex across individ-

uals are more accurate than volume-based approaches

[48,49], substantial variability still remains [50]. It is

possible, of course, to adopt strategies that avoid direct

averaging of activity in a common space, such as manually

defining well-established regions-of-interest in individual
Current Opinion in Behavioral Sciences 2021, 40:45–51
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subjects [51] or characterizing activity at a more abstract

level before averaging [16�,52,53], but these strategies

come with their own limitations.

In the individual-oriented stance, which perhaps is more

typical in sensory studies, statistical variability (error) is

computed across stimuli or trials (or scan sessions) for a

given subject. By doing so, variability is quantified at the

most precise unit of measurement (e.g., voxels, neurons,

electrodes). Additional brain measurements contribute

directly to additional information about the nature of

the computation occurring at each unit, and does so

without incurring any cost of intersubject variability.

The aim is to establish effects in individual subjects

and reproduce the effects on additional subjects if neces-

sary. Notably, this general approach of measurement and

characterization of a small number of subjects is rooted in

classic studies in human psychophysics [54,55], neuroim-

aging [56,57], and animal electrophysiology [58].

Our contention is that adding subjects to increase statis-

tical power makes sense only if one adopts the group-

oriented stance where group-averaging of activity is per-

formed. If we switch stances and instead characterize

effects in individual subjects, the problem of intersubject

variability is largely avoided. In a sense, the choice to

study and analyze group-average activity actually adds

unnecessary ‘noise’ to the analysis. We therefore suggest

that increased sampling of stimulus variation (within an

individual) is a preferable method for improving statisti-

cal power compared to increased sampling of individual

variation.

Complete models of individual brains may reveal the

most interesting forms of individual variation

We think that the most compelling reason for sampling

individual variation is if we are actually interested in

understanding person-to-person variation in some cogni-

tive function [59], or differences between populations

grouped by a shared pathology or mental illness [60]. For

these purposes, studies involving large numbers of sub-

jects are appropriate and may be highly useful for devel-

oping predictive biomarkers for various behavioral phe-

notypes [61]. However, we contend that in neurotypical

subject pools, many of the most interesting forms of

individual variation are subjective mental events like

dreams, mental images, and recalled memories [62,63].

It is likely that a deep understanding of how these events

are mediated by brain activity will require sophisticated

models of individual brains spanning perception, atten-

tion, memory, and cognition—and therefore require

extensive sampling of stimulus and task variation. Func-

tional brain measurements are notoriously noisy (reflect-

ing either instrumental or true neural variation), and

relating brain responses to precise measures of behavior

is a challenging endeavor that requires substantial
Current Opinion in Behavioral Sciences 2021, 40:45–51 
amounts of data, assuming we are careful not to overesti-

mate the robustness of our measures [64].

A case study
We have argued that extensive sampling of stimulus

variation is essential for modeling brain activity and that

allocating samples to one or a few individual brains is

more effective than spreading them across many brains.

But these are mere generalities—how many subjects

should one actually use?

To make our discussion more concrete, we briefly address

specific choices we made for the Natural Scenes Dataset

(NSD, http://naturalscenesdataset.org). NSD is a massive

sampling of high-resolution whole-brain 7T fMRI

responses that will soon be publicly released [18��].
The unique scale of the dataset makes possible analyses

that are difficult to carry out in smaller datasets, such as

end-to-end training of a neural network-based encoding

model of visual responses. Indeed, one of the overarching

goals of NSD was to generate a dataset that can be used to

develop and validate complete models of individual

brains. In designing NSD, we had to move from general

considerations to concrete choices about the number of

stimuli to sample, the number of repetitions per stimulus,

and the number of individual brains across which to

distribute these samples.

NSD samples brain activity in response to roughly

73 000 distinct natural scenes aggregated across subjects.

There is no general principle or rule one can consult to

select the total number of images sampled; it may be the

case that neuroscientists are destined to be starved for

data relative to the dimensionality of visual stimuli.

However, we were guided by the numbers of samples

needed for data-hungry deep-learning techniques [65,66].

State-of-the art techniques typically require tens of thou-

sands of samples, and so we took this rough figure as our

goal.

NSD samples each image three times within a given

subject. Stimulus repeats are not a strict requirement

for all analyses, since there is considerable overlap in

the kinds of visual features that appear across images.

However, stimulus repeats make it possible to entertain

analyses of variation across trials, allowing one to study

issues such as repetition and memory effects [67]. In

addition, stimulus repeats enable the use of cross-valida-

tion methods for data denoising [68]. Finally, in the NSD

experiment, subjects were asked to report on each trial if

they remembered seeing the displayed stimulus on any

previous trial. This added a cognitive dimension that

enriches the analysis potential of the dataset.

NSD includes eight subjects. Why this design? One

motivation comes from statistical considerations. If we

assume that the researcher is equipped to demonstrate
www.sciencedirect.com
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effects in individual subjects, the availability of eight

subjects provides statistical power to guard against inci-

dental findings. For example, using a two-sided sign test,

demonstration of a consistent sign of an effect in six out of

eight subjects corresponds to a p-value of 0.03125.

Our primary consideration for recruiting eight subjects,

however, was the demand on the subjects and the time

required to acquire the full dataset. Although allocating

the full set of 73 000 images to a single subject might not

be an unreasonable proposition from the perspective of

scientific value, subjects already had to commit to nearly a

year of regularly scheduled scan sessions. If a single

subject had been used, the dataset would have taken

eight years to collect as opposed to one. Moreover, we

speculate that a year of scanning may already be near the

upper limit of what most subjects can be asked to tolerate,

at least in the context of strenuous fMRI experiments

where high performance is expected from scan subjects.

Indeed, in light of these considerations, we took special

care when acquiring the NSD dataset to minimize the

burden of participation and to make the experience as

pleasant as possible for the subjects. This included com-

municating clear expectations, sharing the scientific moti-

vation and excitement of the dataset, instituting a bonus

incentive structure for good performance, streamlining

day-to-day scanning procedures, offering refreshments,

maintaining an amicable relationship, continually asses-

sing subject well-being, and soliciting subject feedback.

While subjects had the option of halting participation at

any time, all eight continued until the end.

Future outlook
Currently, there are few human fMRI datasets involving

extremely deep and rich sampling of cognitive phenom-

ena. But we imagine that the utility of and demand for

such datasets will only increase as the field targets more

sophisticated questions about the brain. Indeed, such

datasets seem a necessity if we are attempting to derive

deep principles of intelligence from brain data and incor-

porate these into artificial systems [69�]. Given the

expense of neuroimaging data, collecting these datasets

and making them publicly available are critical for scien-

tific progress. In particular, we are excited by the prospect

of different research groups comparing different models

and analyses on common benchmark datasets [70�,71].
Finally, we note that a shift to extensive sampling of

individuals goes hand-in-hand with improvements in our

ability to collect brain measurements at high spatial and

temporal resolution [72], our ability to handle, store, and

compute on large datasets [73,74], and our ability to apply

data-driven machine-learning techniques that can exploit

large amounts of data [75,76].
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