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Abstract

Purpose: To develop a multi-modal model to automate glaucoma detection.

Design: Development of a machine-learning glaucoma detection model.
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Methods: We selected a study cohort from the UK Biobank dataset with 1193 eyes of 863 

healthy subjects and 1283 eyes of 771 subjects with glaucoma. We trained a multi-modal model 

that combines multiple deep neural nets, trained on macular optical coherence tomography 

volumes and color fundus photos, with demographic and clinical data. We performed an 

interpretability analysis to identify features the model relied on to detect glaucoma. We determined 

the importance of different features in detecting glaucoma using interpretable machine learning 

methods. We also evaluated the model on subjects who did not have a diagnosis of glaucoma on 

the day of imaging but were later diagnosed (progress-to-glaucoma, PTG).

Results: Results show that a multi-modal model that combines imaging with demographic 

and clinical features is highly accurate (AUC 0.97). Interpretation of this model highlights 

biological features known to be related to the disease, such as age, intraocular pressure, and 

optic disc morphology. Our model also points to previously unknown or disputed features, such as 

pulmonary function and retinal outer layers. Accurate prediction in PTG highlights variables that 

change with progression to glaucoma – age and pulmonary function.

Conclusions: The accuracy of our model suggests distinct sources of information in each 

imaging modality and in the different clinical and demographic variables. Interpretable machine 

learning methods elucidate subject-level prediction and help uncover the factors that lead to 

accurate predictions, pointing to potential disease mechanisms or variables related to the disease.

TOCStatement

Data from the UK Biobank was used to develop a machine learning model that accurately 

identifies glaucomatous eyes. It combines information from macular optical coherence 

tomography volumes and color fundus photos with demographic and clinical data. The model 

highlights biological features known to be related to the disease, such as age, intraocular pressure, 

and optic disc morphology. It also points to previously unknown or disputed features, such as 

pulmonary function and retinal outer layers.

Introduction

Glaucoma is the leading cause of irreversible blindness worldwide, affecting approximately 

76 million people in 2020 and predicted to affect nearly 111.8 million by 20401. Glaucoma 

is typically asymptomatic in its early stages; several challenges exist that prevent timely 

and accurate diagnosis. First, considerable expertise is required to perform the appropriate 

clinical exam and to interpret several specialized tests, such as visual field testing and retina 

and optic nerve imaging. The demand for this expertise is outpacing the supply of experts 

available to interpret tests and make diagnoses2. Second, glaucoma is often asymptomatic 

until the advanced stages of the disease. In the United States, approximately 50% of the 

estimated 3 million people with glaucoma are undiagnosed and in other parts of the world, 

estimates are as high as 90%3,4,5,6,7. New diagnostic tools that improve the diagnostic 

efficiency of the existing clinical workforce are therefore vital for enabling earlier detection 

of the disease to facilitate early intervention8,9.

Although glaucoma is asymptomatic in its early stages, structural changes in the macula 

and RNFL precede the onset of clinically detectable vision loss10. Many studies have 

therefore attempted to automatically diagnose glaucoma using retinal imaging data. Most 
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of these studies used either color fundus photos (CFPs) or features extracted from 

CFPs11,12,13,14,15,16,17,18,19,20. Other studies21,22 used features extracted from retinal B­

scans obtained via Optical Coherence Tomography (OCT), a three-dimensional volumetric 

medical imaging technique used to image the retina. Macular OCT images are used to 

extract features such as thickness of the RNFL, ganglion cell-inner plexiform layer (GCIPL), 

or full macular thickness. Models evaluating changes in thickness of various retinal layers 

are promising since such changes, a direct result of tissue loss, are highly accurate disease 

predictors. However, thickness maps are derived automatically and, despite advances in 

OCT hardware and software, errors in segmenting retinal OCT images remain relatively 

common, with error estimates between 19.9% and 46.3%23,24,25. A study comparing a 

model built on raw macular OCT images with one built on thickness maps demonstrated that 

the former was significantly more accurate than the latter in detecting glaucoma26.

In this work, we built a new, multi-modal, feature-agnostic model that includes clinical 

data, CFPs and macular OCT B-scans. Data for our model came from the UK Biobank, 

a multi-year, large-scale effort to gather medical information and data, with the goal of 

characterizing the environmental and genetic factors that influence health and disease27. 

About 65,000 UK Biobank participants underwent ophthalmological imaging procedures, 

which provided both macular OCT and CFP data that we matched with clinical 

diagnoses and with many other demographic, systemic and ocular variables. Specifically, 

cardiovascular and pulmonary variables were chosen as markers of overall health. We 

used raw macular OCT and CFP data and did not rely on features extracted from these 

images. The use of machine learning, and particularly deep learning (DL), methods 

to analyze biomedical data has come under increased scrutiny because these methods 

can be difficult to interpret and interrogate28,29; therefore, we applied machine learning 

interpretability methods to demystify and explain specific data features that led to accurate 

model performance30. Finally, we validated our model by comparing it to expert clinicians’ 

interpretation of CFPs to provide an additional benchmark for the performance of our 

machine learning model relative to current clinical practice.

Methods

Data access:

We conducted an analysis of cross-sectional data from the UK Biobank. Data was obtained 

through the UK Biobank health research program. De-identified color fundus photos, OCT 

scans, and health data were downloaded from the UK Biobank repository and our study, 

which did not involve human subjects research, was exempt from IRB approval. The UK 

Biobank study was approved by an IRB under 11/NW/0382. The UK Biobank’s research 

ethics committee approval means that researchers wishing to use the resource do not need 

separate ethics approval, unless re-contact with participants is required (irrelevant in our 

case). Analysis of de-identified human data is not considered human subjects research by 

the University of Washington Institutional Review Board and does not require additional 

approval and an exemption was determined.
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Data set and Cohort selection:

The UK Biobank is an ongoing prospective study of human health, for which data has 

been collected from over half a million individuals31. Participants throughout the UK were 

recruited between 2006 and 2010 and were aged 40–69 years at the time of recruitment. The 

data set contains information from questionnaires, multi-modal imaging measurements, and 

a wide range of genotypic and phenotypic assessments. Data collection is ongoing, allowing 

for longitudinal assessments. We analyzed a subset of the UK Biobank participants based 

on a snapshot of the repository that was created in the fall of 2017. This subset consisted of 

data from 96,020 subjects, 65,000 of which had retinal imaging data. This data set consisted 

of between one to three visits for each of the subjects. Color Fundus Photographs (CFP) 

data was available for only the first visit for these subjects. Retinal OCT data was available 

for first and second visits. The participants were given questionnaires to report various eye 

conditions, to which they could report healthy or chose one or more the following eye 

conditions: glaucoma, cataract, macular degeneration, diabetic retinopathy and injury for 

each eye. We used the answers provided to the questionnaire as the labels for each eye. We 

did not examine the images to determine or alter the labels associated with the retinal image 

and clinical data.

Cohort selection: We selected a cohort from this data for the following three classes: A) 

subjects who in their first study visit report that they have been diagnosed with glaucoma 

and consistently report a glaucoma diagnosis in follow-up visits (glaucoma); B) subjects 

who in their first study visit report that they had no ocular conditions and consistently 

reported no ocular condition in follow-up visits (healthy); C) subjects who in their first visit 

report no ocular conditions, but in a subsequent visit report having received a diagnosis 

of glaucoma, labeled as the “progress to glaucoma” group (PTG). Ocular measurements 

were only available for the first two visits. The ocular data includes retinal imaging (both 

CFPs and macular OCTs) as well as IOP, Corneal hysteresis and Corneal resistance factor. 

However, a subset of the PTG group (n=21 eyes) received glaucoma diagnosis between 

the first and second visit and we used this subset to conduct statistical analysis of IOP. 

Systemic and pulmonary variables were available for the entire PTG group both pre- and 

post-diagnosis, and we were able to analyze the impact of diagnosis on these variables for 

the entire PTG group.

Exclusion criteria: We excluded all subjects who preferred not to answer questions about 

their ocular conditions or did not know how to answer these questions. For glaucoma 
subjects, we excluded any subjects who listed any ocular conditions in addition to glaucoma, 

such as age-related macular degeneration, diabetic retinopathy, cataract, or injury. For the 

healthy subjects, we excluded any subjects whose visual acuity was recorded as worse 

than 20/30 vision in either eye. We also excluded any healthy subjects with any secondary 

health conditions (determined by primary diagnosis codes record in their hospital inpatient 

records). Finally, we excluded any retinal OCT scans from all three classes that could not 

be aligned using motion translation (x and/or y shift). Supplementary Figure 1 shows a 

flow chart of subject/image inclusion and distribution among subject groups. Supplementary 

Figure 2 shows a sample of excluded retinal OCT images. The final number of for the three 

groups was glaucoma (subjects=863, eyes=1193), healthy (subjects=771, eyes=1283), and 
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PTG (subjects=55, eyes=98). Supplementary Figure 3 shows the age and gender distribution 

of subjects in each of these groups. CFP images were available for only 56 of the 98 eyes in 

the PTG group (retinal OCT images were available for all PTG subjects).

Test set: The data was separated by subject such that both eyes and all visits of any 

subject belonged to either test, train or validation set. At the outset, we randomly selected 

100 eyes, 50 healthy and 50 with glaucoma. These were set aside, as the test set on which 

we evaluated each of the models. An additional 170 eyes were assigned as a validation 

set for parameter tuning and model selection. The data was separated by subject such that 

both eyes of any subject belonged to either test, train or validation set. The test set was 

also rated by five glaucoma experts. Glaucoma experts used the CFPs for providing their 

scores. Glaucoma experts marked 13 CFPs from the test set as being of such poor quality as 

to preclude any assessment. All comparisons of clinician and model performance excludes 

these 13 eyes. Supplementary Figure 4 shows a sample of excluded CFPs.

Evaluating expert performance:

Five glaucoma-fellowship trained ophthalmologists were recruited for the study to evaluate 

CFP images from test set to provide an expert diagnosis. The glaucoma experts identified 

the eye in each CFP as either healthy or glaucoma and rated the confidence in the diagnosis 

from 1 to 5. A higher number indicated higher confidence in their diagnosis. This resulted in 

a 10-point scale for the diagnosis. We used this 10-point scale to create ROC curves for each 

expert.

Machine learning models and training protocols:

We built separate DL models for each imaging modality (retinal OCT and CFP).
—Retinal OCT model: the DL model built on the retinal OCT data took a single retinal 

OCT image as input and output a probability that the input image was from a subject 

with glaucoma. This model required individual B-scans. Each retinal OCT consisted of 

128 B-scan images. This model was not provided any other additional information. This 

DL model was based on the Densenet architecture32, with four blocks with 6, 12, 48 and 

32 layers each. We initialized model weights for this model with MSRA initialization33. 

Each retinal OCT B-scan is a gray scale 512 × 650 image. We flipped each right eye 

image left to right; we did this so that the optic nerve was on the same side for each scan. 

Additionally, we cropped each scan to an aspect ratio of 1:1 and down sampled to 224×224 

pixels. Down-sampling is needed to enable use of limited GPU memory when fitting DL 

models and is common practice in applications of DL to OCT data34,35. We used a per 

pixel cross-entropy as the loss function with 0.1 label smoothing regularization36. We used 

Tensorflow37 with Adam optimizer38 and an initial learning rate of 1-e3 and epsilon of 0.1. 

We trained for 60 epochs (batch size 80) on one graphical processing unit (GPU). The hyper 

parameters for the training protocol were chosen by tuning on the validation data set. To 

improve the generalization ability of our model, we augmented the data by applying affine, 

elastic and intensity transformation over the input images.

CFP model: the DL model on the CFP took a single CFP image as input and outputs a 

probability that the input image was from a subject with glaucoma. This model was built 
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with transfer learning39,40. We chose transfer learning as (a) we had 128X fewer CFP 

images, and (b) CFP are color images and transfer learning has been shown to be effective 

for detecting other pathology in fundus images41. We used the InceptionResnetV442 model, 

pre-trained on ImageNet data43. We used the Adam optimizer with an initial learning rate of 

1-e5. We trained the model for 20 epochs, with a batch size of 400. During training, we kept 

the weights in 2/3 of the network (750 layers) frozen. We pre-processed each fundus image 

by flipping left CFP image so that optic nerve was on the same side of each image. We also 

subtracted local average color to reduce differences in lighting and cropped the images to 

contain the area around the optical nerve (Supplementary Figure 5). We augmented the CFP 

by applying affine, elastic and intensity transformations similar to the retinal OCT images.

Baseline models: modern gradient boosted decision trees often provide state-of-the-art 

performance on tabular style data sets where features are individually meaningful, as 

consistently demonstrated by open data science competitions44. We used gradient-boosted 

decision trees, implemented in XGBoost45, to build four baseline models (BM1, BM2, BM3 

and BM4) based on demographic features: age, gender, ethnicity; systemic features: Body 

Mass Index (BMI), Forced Vital Capacity (FVC), Peak Expiratory Flow (PEF), heart rate, 

diastolic and systolic blood pressure, presence of diabetes, recent caffeine, and nicotine 

intake; and ocular features: Intraocular pressure (IOP), corneal hysteresis, and corneal 

resistance factor. We used IOPcc (corneal compensated IOP) in this study as it is thought 

to be less influenced by corneal measurements such as central corneal thickness, corneal 

hysteresis, and corneal resistance factor than other measures of IOP such as Goldmann 

applanation tonometry 46,47.We chose these factors a priori based on existing literature. The 

systemic features were chosen as markers of overall health. Our data set did not include 

data on direct smoking status. As there is evidence of smoking and pollution being linked 

with glaucoma48 we added pulmonary capacity variables: Forced Vital Capacity (FVC) and 

Peak Expiratory Flow (PEF) in addition to other systemic variables. We used the following 

hyper parameters for training: learning rate of 0.001, early stopping; regularization of 1.0, 

no regularization, no column sampling during training, and bagging sub-sampling of 70%. 

Hyper parameters were chosen by tuning on the validation data set.

Ensemble model: we combined clinical data with results from image-based models to build 

the final model. To combine data from image models we used the probability of glaucoma as 

estimated by the respective image model as the feature value for each image. We combined 

these (128 OCT slices and one fundus) to a 129-element vector as the results of the 

image-based models. This vector was then combined with all the features from BM3 for 

the final feature set. We used gradient-boosted decision trees to build this final model. The 

hyper parameters were chosen by tuning on the validation set and were as follows: learning 

rate 0.001, early stopping, bagging sub-sampling of 70%, L2 regularization of 1.0, no L1 

regularization and no column sampling during training. As an additional control for potential 

over-fitting, we performed a shuffle-test49 where we repeated the training with randomly 

permuted labels (see Supplement Section: Shuffle Test Results).

Interpretability Methods: for pixel-level importance in the image-based DL models we used 

integrated gradients50 and SmoothGrad51 to determine salient pixels for the input images. 

For the tree-based models built using XGBoost, we used Tree explainer52 to calculate the 
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SHAP values. The SHAP values were used to determine feature importance and feature 

interaction.

Statistical analysis: We used bootstrapping53 to determine confidence intervals for AUC 

and accuracy displayed in Figures 2 and 5. We performed analysis of variance (ANOVA) test 

to analyze the differences in pulmonary function features (FVC and PEF) among the three 

groups: healthy, glaucoma and PTG. We used the Dunn Test54 with Bonferroni correction 

for pairwise comparison to determine differences between the three groups.

Results

We built multiple models using clinical data to establish a baseline. Glaucoma is related 

to many biological features, the most important of which is age55. Thus, we built our 

first baseline model (BM1) on basic demographic characteristics of the patient and control 

populations. BM1 included age, gender, and ethnicity. Using these features, a boosted 

gradient tree-based model predicted an occurrence of glaucoma well above chance (area 

under the ROC: 0.81, 95% CI 0.71– 0.90).

In addition, we created three other models: The systemic data model (BM2) added 

cardiovascular and pulmonary variables – including Body Mass Index (BMI), Forced Vital 

Capacity (FVC), Peak Expiratory Flow (PEF), heart rate, diastolic and systolic blood 

pressure, and the presence of diabetes – to the demographic variables from BM1. These 

variables were chosen a priori based on small cohort studies that found relationships 

between glaucoma and BMI56,57,58 and age59, smoking and cardiovascular factors48 We 

also included transient factors, such as recent caffeine and nicotine intake, to account for 

any transient impact on blood pressure and heart rate. BM2 was more accurate then BM1 

in detecting glaucoma (0.88 AUC, 95% CI: 0.79–0.96). In the third model (BM3), we 

added ocular data to BM1, including IOP, corneal hysteresis, and corneal resistance factor. 

We did not include visual acuity in BM3, as this factor was used in delineating our study 

groups: which individuals are patients and which are healthy controls, excluding as controls 

individuals with low visual acuity. BM3 performed similarly to BM2 (0.87 AUC, 95% 

CI:0.8–0.94). In the fourth model (BM4), we added systemic and ocular data to BM1. BM4 

was more accurate than all three of the other baseline models, with a test set AUC of 0.92, 

95% (CI: 0.87 – 0.96; Figure 1A, D).

We used SHapley Additive exPlanations (SHAP)60 to analyze the features that provide high 

predictive power in BM4. SHAP allocates optimal credit with local explanations using the 

classic Shapley values derived from game theory61 and provides a quantitative estimate of 

the contribution of different features to the predictive power of a model. A higher absolute 

SHAP value indicates greater feature impact on the model prediction and greater feature 

importance. The five features with the highest mean absolute SHAP values for BM4 were 

age, IOP, BMI, FVC and PEF. Supplementary Figures 6 and 7 show the most important 

features in BM4, as evaluated through SHAP, and the interaction effect among the top 

features.
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We built a separate DL model on each retinal image modality. Glaucoma is characterized 

by structural changes in the optic disc and other parts of the retina. Visual examination of 

CFP and macular OCT images is therefore an important tool in current diagnostic practice62. 

Since our data set included both CFP and OCT images, we built separate DL models for 

each image modality (see Methods). The DL model built on CFP classified eyes diagnosed 

with glaucoma with modest accuracy (AUC: 0.74, 95% CI: 0.64–0.84; Figure 1B, E). The 

DL model built on macular OCT images was more accurate than all the baseline models and 

the model trained on CFP images (AUC: 0.95, 95% CI: 0.90– 1.0).

When we combined information from both the DL models trained on CFP and OCT via an 

ensemble, the resulting model was marginally more accurate than the DL model build on 

macular OCT images alone (AUC: 0.963, 95% CI:0.91–1.0). There are several studies which 

demonstrated the complementary nature of macular data and optic nerve-head data. Given 

the macular OCT does not contain the optic disc, it seems unlikely that CFP do not provide 

additional information.

We used several methods to interpret the DL models. DL models are notoriously inscrutable. 

However, several methods for interrogating these models have recently emerged63,64,65,66,50. 

To assess the features that lead to high performance of the image-based models, we first 

assessed which scan of the macular OCT provided the most information. We fit individual 

models to each scan of the macular OCT. Recall that macular OCTs are volumetric images; 

in the UK Biobank data set, each macular OCT consists of 128 scans. We found that models 

using scans from the inferior and superior macula were more accurate than those using the 

central portion of the macula (Figure 2A). Second, we built an ensemble model that used 

the results of the DL models of the individual macular OCT scans to predict glaucoma 

occurrence per retina. This model used each of the 128 macular OCT scans to make a 

prediction about the retina. Figure 2B shows the feature importance attributed to each scan 

via SHAP; it shows that scans from the inferior retina were deemed more important by this 

model. Large patient and control populations are heterogeneous, and we do not generally 

expect that information will consistently come from one particular part of the retina. 

Nevertheless, when considering the SHAP values of each macular OCT scan, we found that 

the data set broke into two major clusters based on the SHAP values from different retinal 

parts (Figure 2C). One cluster mostly contained retinas from healthy subjects and used scans 

from the inferior part of the retina as negative predictors of glaucoma. The second cluster 

mostly contained glaucomatous retinas, and SHAP values of these same scans from inferior 

and superior macula were used as positive predictors of glaucoma. This also explains why 

models fit only to scans from the inferior or the superior macula were more accurate.

In addition to the scan-by-scan analysis, image-based models can be evaluated pixel-by­

pixel to determine the importance of specific image features to the DL models’ decision 

making. Using integrated gradients50, we generated saliency maps of the pixels responsible 

for DL model prediction. Figure 3 shows a macular OCT scan for an eye with glaucoma and 

a scan for a control eye along with the CFP images and CFP saliency maps for each eye.
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The CFP saliency maps typically highlight the optic nerve head in both normal and 

glaucomatous retinas. The saliency maps for OCT image typically highlight the nasal side of 

the RNFL and outer retinal layers.

We built the final model by combining both modalities of retinal imaging, demographic, 

systemic and ocular features. This model was an ensemble, which combined information 

from raw macular OCT B-scans and CFP images as well as all demographic, systemic 

and ocular data used in BM4. This final model had an AUC of 0.967, (95% CI: 0.93 – 

1.0). Figure 4 shows the ten features with the highest mean absolute SHAP value over all 

observations in the data set. The most important features for this final model, as determined 

by their SHAP values, include age, IOP and FVC, in addition to the CFP and macular 

OCT scans from both inferior and superior macula. BMI is less significant than FVC in 

this final model. Further, IOP had a higher importance than age. This is a reversal in 

importance of features when compared to models built without information from retinal 

imaging. Unsurprisingly, this confirms that the CFP and OCT scans contain information that 

supersedes in importance the information provided by BMI and age.

We compared the performance of our model with ratings from glaucoma expert to provide 

a comparison to current clinical practice. To compare the performance of our final model to 

expert clinicians, five glaucoma experts evaluated CFPs of the test set. Initially, experts were 

also given access to OCT images for each subject. However, raw b-scans from macular 

OCTs are not an image modality that experts usually examine during regular clinical 

practice for glaucoma diagnosis. Since we did not have access to thickness maps, experts 

made the diagnoses using only the CFP data. (Figure 1C and D). The highest AUC for the 

expert rating was 0.84, and the lowest was 0.79. The average pairwise kappa for the five 

experts was 0.75, indicating a good level of agreement between experts about the diagnosis.

We validated our model by evaluating it on patients that progress to glaucoma. The UK 

Biobank data set contained several subjects who lacked a glaucoma diagnosis on their first 

study visit but received a diagnosis before a subsequent visit. These “progress-to-glaucoma” 

(PTG) subjects provide a unique opportunity to evaluate our model, which was built on 

data from glaucomatous and healthy subjects. Detection of glaucoma in the PTG cohort was 

tested using all our models (Figure 5A). Both BM1 (based on age, gender and ethnicity) and 

BM2 (added systemic variables) were indistinguishable from chance performance (BM1: 51 

% correct: 95% CI [36% – 64%]; BM2: 47% correct: 95% CI [33%–60%]). BM4, which 

included ocular variables, achieved substantially higher accuracy at 75% correct (95% CI: 

[67%–83%]). The model trained on macular OCT images achieved slightly lower accuracy 

at 65% correct (95% CI [55% – 74.5%]), and the model trained on combined CFP and OCT 

achieved an accuracy of 69% (95% CI [60.2% –78.6%]). The final model trained on OCT, 

CFP and all other available features achieved an accuracy of 75% correct (95% CI [65% – 

83%]).

This evaluation may provide additional insight into the biological features of the disease. 

For many of these features, including age and BMI, the PTG group lie between the 

normal and glaucoma groups (Figure 5B to E). We identified two interesting deviations 

from this pattern. First, for the pulmonary capacity variables (FVC and PEF), the PTG 
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group was indistinguishable from the healthy subjects in our sample, and both healthy 

and PTG subjects significantly differed from patients with glaucoma. This difference 

is statistically significant even when controlling for age (see Supplementary Results). 

However, on a subsequent visit, after receiving a glaucoma diagnosis, the pulmonary 

capacity measurements of this group was indistinguishable from that of the glaucoma group. 

Second, the PTG group had a significantly higher IOP than the group diagnosed with 

glaucoma (Figure 5D; see Supplementary Results). The post-diagnosis IOP measurements of 

the PTG group shows similar trend with lower IOP values.

Finally, as the labels we used were based on self-report, we performed several analyses to 

ascertain the reliability of glaucoma labels (Supplementary Results).

Discussion

Automating glaucoma detection using imaging and clinical data may be an important and 

cost-effective strategy for providing population-level screening. In this study, we used 

machine learning to construct an interpretable machine learning model that combined 

clinical information with multi-modal retinal imaging to detect glaucoma. We created 

and compared several models based on clinical data to establish a baseline: BM1 

used demographic data (age, gender, ethnicity), BM2 added systemic medical data 

(cardiovascular, pulmonary), and BM4 added ocular data (IOP, corneal hysteresis, corneal 

resistance factor). Our final model was an ensemble, which combined information from raw 

macular OCT B-scans and CFP images as well as all demographic, systemic and ocular data 

used in BM4. This final model had an AUC of 0.97.

In interpreting this final model, we found that CFP, age, IOP, macular OCT images from 

the inferior and superior macula, and FVC were the most important features (Figure. 4). 

The significance placed upon age and IOP by our final model reiterate previously known 

risk factors for glaucoma. The positive SHAP values for IOP in our model rapidly increased 

above an IOP of approximately 20. This is consistent with the fact that ocular hypertension, 

defined as IOP greater than 21, is a key risk factor for the disease and furthermore clinicians 

may be more likely to diagnose glaucoma in individuals who have an IOP greater than 

2167,68,69,70,71. Age and IOP switched places in their relative importance in our final model, 

which includes retinal imaging, in addition to BM4 features. This suggests that retinal 

imaging includes information that supersedes or is redundant with information linked to 

age. This finding is consistent with previous research, which demonstrated the ability of 

CFP to predict cardiovascular risk factors including age72. Several population-based studies 

have already demonstrated an increase in the prevalence of glaucoma with age and have 

also identified differences in the prevalence of glaucoma among individuals of varying 

ethnicities73,74,75. In their study of polygenic risk scores for intraocular pressure using data 

from the UK Biobank data set, Gao et al76 calculated an AUC for the diagnosis of primary 

open angle glaucoma of 0.713 for a model including only age and sex. The addition of 

ethnicity in our model may explain why our AUC for BM1 was slightly higher at 0.81. We 

also observe two discontinuities in the age vs. SHAP values for age (Figure. 4B), at ages 

57 and 65. At both ages the SHAP values for age increase at a higher rate than before. 

This could be both due to biological, as well as socio-economic factors (e.g., 65 is the 

Mehta et al. Page 10

Am J Ophthalmol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



age of retirement in the UK). However, it is difficult to make strong inferences about the 

relationship between age, diagnosis, and retinal imaging data, because these may be related 

in complicated manners. The fact that these individuals self-report that they have glaucoma 

is also mediated by clinical decision making of the clinicians who assessed these individuals 

and told them they had glaucoma, itself possibly affected by age. For more on issues with 

self-reported labels, see below.

The relationship between BMI and glaucoma is controversial, with studies citing evidence 

for no correlation57, positive correlation77, and negative correlation78 between the two. 

Consistent with the most comprehensive of these studies, the meta-analysis conducted by 

Liu et al.77, BM4 demonstrated a positive correlation between glaucoma and increased 

BMI (Supplementary Figure 6). The correlation between BMI and glaucoma might also 

be due to ascertainment bias, as subjects with high BMI are more likely to seek medical 

care (for non-glaucoma related health issues) leading to higher diagnosis of glaucoma in 

this population. An important novel finding of our study was the correlation of pulmonary 

measures, especially decreased FVC, with glaucoma. There are several possible explanations 

for this finding. First, a recent study by Chua et al. found a correlation between glaucoma 

and atmospheric particulate matter79. Chua et al.’s study did not include pulmonary function 

tests such as FVC and was correlational in nature, but other studies have linked exposure 

to particulate matter with decreased FVC80,81,82, suggesting common causes for reduced 

FVC and for glaucoma. Second, it may be that the treatment of glaucoma with topical 

beta blocker therapy has an impact on reducing FVC83. This idea receives further support 

from the findings in the PTG group, who do not have a diagnosis and have presumably not 

received any treatment. These individuals have FVC that is higher than the glaucoma group 

and is indistinguishable from the healthy group before a diagnosis is made. After a diagnosis 

is made, their FVC also decreases to levels indistinguishable from that of the glaucoma 

group. Thus, lower FVC values could indicate a result of glaucoma treatment.

Examination of the pixel-by-pixel importance of both retinal image modalities provided 

additional insight into what our model focused on when predicting glaucoma (Figure 3). 

For the CFPs, the model focused on the optic disc, a known source of information in 

the clinical diagnosis of glaucoma84. For the macular OCT B-scans, the model relied 

on previously validated retinal areas, including the inferior and superior macula85. In 

addition, the algorithm points to the nasal macular RNFL. The effect of glaucoma on 

RNFL integrity is well understood, and RNFL thickness maps are often used clinically to 

diagnose glaucoma. However, the automated algorithms that are used clinically have a high 

segmentation error rate, resulting in variable thickness estimates, which may in turn lead 

to errors in diagnosis23. By avoiding reliance on extracted features such as thickness maps, 

our approach enabled the discovery of other possible biological features of glaucoma. For 

example, consistent with recent results in the same data set86, the model also identified other 

(non-RNFL) parts of the inner retina as important (e.g., see Figure 3B).

In addition to the RNFL and inner retina, the model relied on the outer layers of the 

retina for glaucoma diagnosis. The involvement of the retinal outer layers in glaucoma is 

controversial. In a typical analysis of OCT images that focuses on the thickness of different 

parts of the retinal layers, glaucoma effects are usually not found in outer layers87,88,89, 
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but an association between age, IOP and retinal pigment epithelium thickness is sometimes 

detected90. Some anatomical studies do not find any differences in the outer retinal layer 

between healthy and glaucomatous eyes91. Other studies, using psychophysical methods in 

human subjects with glaucoma92,93, using histological methods in human eyes94,95 have 

shown the involvement of the retinal outer layer in glaucoma. In addition, Choi et al.96 used 

high-resolution imaging techniques (ultrahigh-resolution Fourier-domain optical coherence 

tomography, UHR-FD-OCT, and adaptive optics, AO) to image glaucomatous retinas. They 

found a loss of retinal cone receptor cells that correspond to visual field loss. This loss 

of cones could cause subtle changes in the appearance of this part of the retina, that 

are not reflected in changes in thickness but are still captured by the DL model (e.g., 

changes in texture). Ha et. al found that the retinal photoreceptor ellipsoid zone intensity in 

SD-OCT was decreased in glaucomatous eyes, and this decrease correlated with the stage 

of glaucoma. They were able to create an automated model that could quantify the changes 

in ellipsoid zone intensity. This was not an agnostic model, but it suggests that there is a 

quantifiable change in the outer retina in glaucoma that a deep learning model may be able 

to identify97,98. On the other hand, the changes to outer retina that are used by the DL model 

could also be an artifact related to thinning of the inner retina without a specific biological 

basis in outer retina.

The ability of DL models to use visual cues that are not apparent to the human eye has been 

previously demonstrated in another study in which retinal angiograms were generated from 

OCT images99. This finding is also consistent with a recent study that used unsegmented 

OCT scans and reported the involvement of outer retinal layers in a DL model that detects 

glaucoma26,100. Nevertheless, this result could also be a consequence of more prosaic effects 

of DL sensitivity: One possibility is that the DL model is relying on the outer retina 

OCT signal, because changes to more superficial layers such as the RNFL lead to signal 

hyperintensity or increased speckle scatter in the deeper layers. Another possibility is that 

the outer retinal layers are being used as an anatomic reference point for the model to use 

overall retinal thickness.

Our final model detected the occurrence of glaucoma with an accuracy of 75% on a 

cohort that had not yet been clinically diagnosed at the time of their testing (“progress-to­

glaucoma”, PTG). This does not constitute early detection: even though the individuals 

were not clinically diagnosed, they may already have significant disease progression, since 

many patients are undiagnosed even in relatively late stages of the disease10. The median 

IOP value was higher for the PTG cohort than for the subjects diagnosed with glaucoma, 

possibly because treatments for glaucoma are designed to decrease IOP. The PTG group 

also tended to be younger than those diagnosed with glaucoma. Interestingly, FVC in 

the PTG group was higher than in the glaucoma group and was indistinguishable from 

healthy subjects. This finding helps explain why BM2, which relied heavily on PVC and 

PEF, performed relatively poorly on the PTG cohort, achieving an AUC of 47% (Figure 

5A). It also provides possible evidence against a causal relationship between FVC and 

glaucoma, as mentioned above. Furthermore, in a post-diagnosis visit, pulmonary factors 

(FVC and PEF) in these individuals were lower and indistinguishable from that of the 

patients with glaucoma, further supporting a possible treatment effect. This area warrants 

further investigation. The results obtained with this cohort are somewhat limited. This is 
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because the size of this cohort is rather small – only 55 participants. Due to this limited 

sample size, this group was only used as a further validation and not used to fit any of the 

models.

Before our model can be considered for use in a real-world setting, several limitations 

should be considered and addressed. A major limitation of our study was the veracity 

of ground truth labels used to train the model. Labels used were based on self-report, 

which may be problematic101. In particular, there is a concern that labels may include 

significant proportions of false negatives (i.e., people who have glaucoma, but do not 

report so; glaucoma is generally under-reported7) and false positives (i.e., people who do 

not have glaucoma, but report that they do. For example, because they confuse different 

eye disorders). Self-reported labels were particularly pernicious for assessment of PTG 

individuals, as this designation relied on several self-reported labels for each individual. 

To further explore these concerns, we examine several factors (Supplemental Results). A 

previous study that used self-report as labels for models of glaucoma with this dataset79 

confirmed that the distributional characteristics of the UK Biobank participants who self­

reported glaucoma matched the demographic distribution of those from other population 

studies such as the Blue Mountain Eye Study102, the Rotterdam Eye Study103, and the 

Baltimore Eye Study104. In general, it would have been better to use the gold-standard 

ICD 9/10 available for UK Biobank participants who underwent inpatient procedures. 

However, this poses significant challenges too: the proportion of participants who met this 

criterion is too low for machine learning approaches that take advantage of retinal imaging 

data. Additionally, this population would be biased since they warranted inpatient clinical 

care and therefore would potentially represent a subset of glaucoma that has increased 

severity of the disease, compared to other individuals with glaucoma. Nevertheless, the 

presence of these labels provides an additional opportunity to evaluate the veracity of 

self-report. When a gold-standard ICD-10 diagnostic code of glaucoma is available, it is 

always consistent with self-report, suggesting a low prevalence of false negatives in this 

group. In addition, concerns about self-report labels are mitigated by the high test-retest 

reliability of self-report: only 0.3% of individuals with repeat visits provide inconsistent 

self-report. Furthermore, all but one individual who reported that they were prescribed 

medication that is used for treatment of glaucoma, self-reported that they have glaucoma, 

which suggests a low prevalence of false negatives in this group. Still, while we eliminated 

any subject who had inconsistent answers or declined to answer, the generally high rate of 

undiagnosed glaucoma and the potential for recollection error means that some participants 

may have been incorrectly labeled. Considering the effects of such mislabeling, we note 

that a high prevalence of false positives (i.e., a substantial portion of glaucoma suspects 

or ocular hypertensive participants mistakenly reporting having glaucoma) would weaken 

the associations and effects that we are reporting, since they would systematically bias the 

effects towards the null hypothesis. While we agree that this may affect our classification 

model, we believe that the systemic risk factors that we have found as a positive effect may 

be an under-estimate of the true effects. Nevertheless, the issue of self-reported labels cannot 

be fully overcome with these data, and these results would have to be confirmed in a dataset 

in which ground-truth labels are available.
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Another limitation of the present study is that we included only subjects without other ocular 

disorders. In the general population, glaucoma may coexist with other ocular comorbidities, 

and it is unclear what effect this may have on the model’s ability to detect glaucoma 

accurately. This also limits the translation of this model to real-world use. Nevertheless, 

selecting subjects with only a glaucoma diagnosis and no other ocular morbidities instills 

confidence that the model we built is glaucoma-specific: delineates the boundaries between 

these groups, and identifies the features specific to glaucoma. Furthermore, there is some 

evidence that the UK Biobank has a slight healthy volunteer bias105, potentially biasing 

inferences to the general population from a model based only on this data. In our results, this 

bias would probably also induce a bias to the null. Nevertheless, taken together, these factors 

suggest that a model such as the one proposed here would need to be optimized with more 

data and data that is more representative of the general population and patient populations 

before it could be utilized in practice.

Finally, features of the optic disc are clinically important in diagnosing glaucoma. The 

limited quantity and poor quality of the CFPs in the UK Biobank data set likely contributed 

to the low AUC of both the CFP DL model and the expert clinician grading. In addition, 

clinicians did not have access to any additional information about the individuals, and 

it is very likely that clinicians informally use demographic information, such as patient 

age, and self-reported daily activities as additional information when making diagnostic 

determination. This means that in other data, or in clinical settings where CFP have very 

high quality, and additional information is synthesized into clinical decision making, these 

data may improve the input of models that use CFP. Furthermore, as demonstrated in 

our combined model, synthesizing multiple sources of information helps us draw clinical 

insights into the pathogenesis of the disease.

Our study combined information from multiple sources – including two different 

retinal imaging modalities (CFP and OCT), demographic data, and systemic and ocular 

measurement – to build a model that detects glaucoma. This approach yielded not only very 

accurate detection, but it also enabled us to isolate and interpret critical variables that helped 

us draw clinical insights into the pathogenesis of the disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Results of glaucoma detection models. Receiver operating characteristic (ROC) curves are 

shown for (A) baseline models built with systemic and ocular data, (B) retinal imaging 

and final models, and (C) glaucoma expert ratings based on interpretation of CFPs. The 

corresponding area under the ROC curves (AUC) with (+/− 95% Confidence Interval) for 

models (D, E) and for clinician scores (F). The gray dashed line and shaded area denote 

the AUC and 95% CI for a base model (BM1) built on demographics (age, gender, and 

ethnicity).
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Figure 2: 
Interpretation of the ensemble model built on macular OCT images. (A) AUC for single 

image per retina models, (B) mean absolute SHAP values per retinal image for predicting 

glaucoma occurrence per retina, and (C) heat map of SHAP value per retinal image for 

predicting glaucoma occurrence per retina. The images are ordered from top to bottom and 

from superior to inferior retina. The dashed line indicates the central retinal image from the 

OCT volume.

Mehta et al. Page 22

Am J Ophthalmol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Saliency maps for macular OCT and CFP. Columns left to right: macular OCT image 

overlaid with saliency map, cropped CFP input to the neural network, CFP saliency map. 

Each macular OCT image is laid out with its temporal side to the left. (A) Retina of a 

subject with glaucoma diagnosis. (B) Retina of healthy subject. The green outline on the 

OCT saliency map indicates the areas the model deems most important. The darker pixels on 

the CFP saliency map indicate the areas the model deems most important.
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Figure 4: 
Interpretation of the final model built on image, demographic, systemic and ocular data. 

Interpretation for models built on medical and optometric features is based on SHAP values. 

(A) The 10 most important features from this model. SHAP values vs feature values for (B) 

Age, (C) IOP, (D) FVC and (D) BMI. Each point denotes a subject, and the color denotes 

whether the subject has been diagnosed with glaucoma.
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Figure 5: 
Evaluation of various models on the PTG cohort. (A) Accuracy of the models on the 

“progress-to-glaucoma” (PTG) cohort. The gray dashed line and shaded area denote the 

AUC and 95% CI for a base model built on demographics alone (age, gender and ethnicity; 

BM1). The bottom row shows the distribution of Age(B), BMI(C), FVC(D) and IOP(E) for 

healthy, PTG, PTG (after glaucoma diagnosis) and glaucoma. ***P < 0.0001.
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