Chemistry 510 Special Topics in Inorganic Chemistry

Professor J. Kovacs Wed & Fri 9:00–10:20 am Bagley 331A

Concepts:

1. Evidence of M⁺ⁿ importance to life

[M⁺ⁿ] in ocean vs body

Number of Metalloenzyme structures in Protein data bank

Number of Gordon conferences devoted to the topic

Workshops

2. Key Roles of M⁺ⁿ in Biology

Why transition-metals?

3. Metal ion properties important for catalytic activity

Labile M-L bonds

Ligand Field and Covalent bonds

Spin-state and Magnetic properties

Metal ion Lewis acidity

Redox potentials

4. Selecting the right M⁺ⁿ for a given function

Chelate effect/macrocyclic effect

M⁺ⁿ radius

5. How Nature tunes M⁺ⁿ properties

H-bonding

Entatic State

Protein constraints

6. How M⁺ⁿ can be spectroscopically probed

Overview

7. Biological O₂ Chemistry

Overview

Kinetics

Spin-Forbidden

Thermodynamics

Proton-coupled electron transfer (PCET)

8. Thermodynamics and kinetics of electron transfer

Redox potentials

Marcus theory

Role of protons in making e- transfer energetically feasible

9. The electron transport chain

Why are Fe₄S₄ clusters and Blue Cu so good at electron transfer?

Mossbauer

EPR

10. Controlled Dioxygen Activation

Mechanism overview

Assessing extent of activation using rRaman

Superoxo intermediates in P450 and IPNS

11. H-atom Transfer and PCET in Biological Oxidation Rxns

Are Fe-O₂*- potent enough to cleave C-H bonds?

Deuterium isotope effects

Hydroperoxo intermediates (homolytic and heterolytic cleavage)

Binuclear peroxo intermediates

High-valent Fe(IV)=O and Fe(V)=O intermediates

The oxo wall

Electronic structure of high-valent oxos

Thermodynamic cycle of HAT

Asynchronous PCET

12. Electronic structure Fe(IV)=O compounds

Spin-state dependent reactivity

Incipient formation of Fe-oxyl

13. Nitrogenase

14. Photosynthetic water oxidation